K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\\ =\left(2-1\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ =1-\dfrac{1}{2^{99}}< 1\)

Vậy \(B< 1\)

17 tháng 7 2017

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)

\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)

\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(\Rightarrow B=1-\dfrac{1}{2^{99}}\)

\(\rightarrow B< 1\rightarrowđpcm\)

9 tháng 10 2020

1/ 3x-1 + 5.3x-1 = 162

3x-1(1 + 5) = 162

3x-1 = \(\frac{162}{6}\)

3x-1 = 27

3x-1 = 33

x - 1 = 3

x = 4

2/ B = 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1

\(\Rightarrow\) 3B = 3.3100 - 3.399 + 3.398 - 3.397 + ... + 3.32 - 3.3 + 3.1

= 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3

Ta có:

4B = 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100 - 399 + 398 - 397 + ... + 32 - 3 + 1)

= 3101 + 3100 - 3100 + 399 - 399 + 398 - 398 + ... + 3 - 3 + 1

= 3101 + 1

\(\Rightarrow\) B = \(\frac{3^{101}+1}{4}\)

10 tháng 11 2020

Cảm ơn bạn nhiều nha

Gọi biểu thức trên là Acó:

A=1+1/2+1/2^2+1/2^3+...+1/2^99+1/2^100

2A=1/2+1/2^2+1/2^3+....+1/2^99+1/2^100+1/2^101

2A-A=(1/2+1/2^2+1/2^3+....+1/2^99+1/2^100+1/2^101)-(1+1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)

A=1/2^101-1

A=-1

16 tháng 12 2020
. .
16 tháng 12 2020

as molie

25 tháng 9 2019

b, \(\left(5x+1\right)^2=\frac{36}{49}\)

\(\Rightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)

\(\Rightarrow5x+1=\frac{6}{7}\)

\(\Rightarrow5x=\frac{-1}{7}\)

\(\Rightarrow x=\frac{-1}{35}\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lần sau bạn lưu ý gõ đề bằng bộ gõ công thức toán $(\sum)$ để được hỗ trợ tốt hơn.

Lời giải:
Ta có:

$\frac{1}{3^2}< \frac{1}{2.3}$

$\frac{1}{4^2}< \frac{1}{3.4}$

...........

$\frac{1}{1990^2}< \frac{1}{1989.1990}$

Cộng tất cả theo vế:

$\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{1989.1990}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{1989}-\frac{1}{1990}$

$=\frac{1}{2}-\frac{1}{1990}< \frac{1}{2}$

$\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}$

Ta có đpcm.