Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bất đẳng thức Cô-si, ta được: \(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)\(=\frac{bc\sqrt{\left(a-1\right).1}+\frac{1}{2}ca\sqrt{4.\left(b-4\right)}+\frac{1}{3}ab\sqrt{9.\left(c-9\right)}}{abc}\)\(\le\frac{bc.\frac{\left(a-1\right)+1}{2}+\frac{1}{2}ca.\frac{4+\left(b-4\right)}{2}+\frac{1}{3}ab.\frac{9+\left(c-9\right)}{2}}{abc}\)\(=\frac{\frac{1}{2}abc+\frac{1}{4}abc+\frac{1}{6}abc}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)
Đẳng thức xảy ra khi a = 2; b = 8; c = 18

Lời giải:
a)
Sử dụng pp biến đổi tương đương:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)
\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)
Ta có đpcm.
b) Áp dụng công thức của phần a ta có:
\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)
Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)
Do đó:
\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)
Cộng theo vế các BĐT trên thu được:
\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)
\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$

Đề TST của KHTN lớp 10 :3
Dễ có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le3\)
\(P=\Sigma\frac{bc}{\sqrt[4]{a^2+3}}\ge\Sigma\frac{bc}{\sqrt[4]{a^2+ab+bc+ca}}=\Sigma\frac{bc}{\sqrt[4]{\left(a+b\right)\left(a+c\right)}}=\Sigma\frac{\sqrt{2}bc}{\sqrt[4]{\left(a+b\right)\left(a+c\right)2\cdot2}}\)
Đến đây khó quá huhu

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2+b^2}{ab\left(a+b\right)^3}\ge\dfrac{2ab}{ab\left(a+b\right)^3}=\dfrac{2}{\left(a+b\right)^3}\\\dfrac{b^2+c^2}{bc\left(b+c\right)^3}\ge\dfrac{2bc}{bc\left(b+c\right)^3}=\dfrac{2}{\left(b+c\right)^3}\\\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{2ca}{ca\left(c+a\right)^3}=\dfrac{2}{\left(c+a\right)^3}\end{matrix}\right.\)
\(\Rightarrow VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)
Chứng minh rằng \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{9}{8}\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left\{{}\begin{matrix}2ab\le a^2+b^2\\2bc\le b^2+c^2\\2ca\le c^2+a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab\le a^2-ab+b^2\\bc\le b^2-bc+c^2\\ca\le c^2-ca+a^2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}ab\left(a+b\right)\le\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\\bc\left(b+c\right)\le\left(b+c\right)\left(b^2-bc+c^2\right)=b^3+c^3\\ca\left(c+a\right)\le\left(c+a\right)\left(c^2-ca+a^2\right)=c^3+a^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3ab\left(a+b\right)\le3\left(a^3+b^3\right)\\3bc\left(b+c\right)\le3\left(b^3+c^3\right)\\3ca\left(c+a\right)\le3\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+3ab\left(a+b\right)+b^3\le4\left(a^3+b^3\right)\\b^3+3bc\left(b+c\right)+c^3\le4\left(b^3+c^3\right)\\c^3+3ca\left(c+a\right)+a^3\le4\left(c^3+a^3\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^3\le4\left(a^3+b^3\right)\\\left(b+c\right)^3\le4\left(b^3+c^3\right)\\\left(c+a\right)^3\le4\left(c^3+a^3\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\left(a+b\right)^3}\ge\dfrac{1}{4\left(a^3+b^3\right)}\\\dfrac{1}{\left(b+c\right)^3}\ge\dfrac{1}{4\left(b^3+c^3\right)}\\\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4\left(c^3+a^3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\ge\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\)
Chứng minh rằng \(\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}=\dfrac{9}{2}\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{a^3+b^3}+\dfrac{1}{b^3+c^3}+\dfrac{1}{c^3+a^3}\right)\ge\dfrac{9}{8}\) ( đpcm )
Vậy \(2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\ge\dfrac{9}{4}\)
Mà \(VT\ge2\left[\dfrac{1}{\left(a+b\right)^3}+\dfrac{1}{\left(b+c\right)^3}+\dfrac{1}{\left(c+a\right)^3}\right]\)
\(\Rightarrow VT\ge\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{a^2+b^2}{ab\left(a+b\right)^3}+\dfrac{b^2+c^2}{bc\left(b+c\right)^3}+\dfrac{c^2+a^2}{ca\left(c+a\right)^3}\ge\dfrac{9}{4}\) ( đpcm )

Đặt \(A=ab\sqrt{ab}+bc\sqrt{bc}+ac\sqrt{ac}=1.\\ \)( cho đỡ phải đánh máy nhiều )
Ta có : \(\frac{a^6}{a^3+b^3}=a^3-\frac{a^3b^3}{a^3+b^3}\ge a^3-\frac{a^3b^3}{2\sqrt{a^3b^3}}=a^3-\frac{ab\sqrt{ab}}{2}\left(1\right).\)
( do a,b> 0 nên \(a^3+b^3\ge2\sqrt{a^3b^3}\Rightarrow\frac{a^3b^3}{a^3+b^3}\le\frac{a^3b^3}{2\sqrt{a^3b^3}}\))
chứng minh tương tự ta có :
\(\frac{b^6}{b^6+c^6}\ge b^3-\frac{bc\sqrt{bc}}{2}\left(2\right).\); \(\frac{c^6}{c^3+a^3}\ge c^3-\frac{ca\sqrt{ca}}{2}\left(3\right).\)
cộng vế với vế các bđt (1) (2), (3) ta được :
\(P\ge a^3+b^3+c^3-\frac{A}{2}\left(4\right).\)
Áp dụng BĐT Cô si ( AM - GM ) : \(\frac{a^3+b^3}{2}\ge\sqrt{a^3b^3}=ab\sqrt{ab}.\)( làm tương tự 2 lần nữa với a^3, b^3 , c^3 rồi cộng vế với vế ta được )
=> \(a^3+b^3+c^3\ge ab\sqrt{ab}+bc\sqrt{bc}+ca\sqrt{ca}=A\left(5\right).\)
Thay (5) vào (4) ta được :
\(P\ge A-\frac{A}{2}=\frac{A}{2}=\frac{1}{2}.\)
Vậy Pmin = 1/2 khi a = b = c = \(\frac{1}{\sqrt[3]{3}}.\)

Xét a=1,b=4,c=9 thì P=0
Xét \(a>1,b>4,c>9\)
Áp dụng BĐT AM-GM ta có:
\(P=\frac{bc.\sqrt{a-1}.1+\frac{ca}{2}.\sqrt{b-4}.2+\frac{ab}{3}.\sqrt{c-9}.3}{abc}\)
\(\le\frac{bc.\frac{a-1+1}{2}+\frac{ca}{2}.\frac{b-4+4}{2}+\frac{ab}{3}.\frac{c-9+9}{2}}{abc}\)
\(=\frac{\frac{abc}{2}+\frac{abc}{4}+\frac{abc}{6}}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)
Nên GTLN của P là \(\frac{11}{12}\) đạt được khi \(\hept{\begin{cases}\sqrt{a-1}=1\\\sqrt{b-4}=2\\\sqrt{c-9}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a-1=1\\b-4=4\\c-9=9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=8\\c=18\end{cases}}\)
\(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)
Vì \(a\ge1;b\ge4;c\ge9\). Áp dụng BĐT Cosi cho các số dương ta được:
\(\sqrt{a-1}=1\cdot\sqrt{a-1}\le\frac{1+a-1}{2}=\frac{a}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{a-1}=1\Leftrightarrow a=2\)
\(\sqrt{b-4}=2\cdot\sqrt{b-4}\le\frac{4+b-4}{2}=\frac{b}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{b-4}=2\Leftrightarrow b=8\)
\(\sqrt{c-9}=3\cdot\sqrt{c-9}\le\frac{9+c-9}{2}=\frac{c}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{c-9}=3\Leftrightarrow c=18\)
\(\Rightarrow P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\le\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{3}{2}\)
Vậy GTLN của P\(=\frac{3}{2}\Leftrightarrow a=2;b=8;c=18\)
Phân tích và giải quyết:
1. Đặt ẩn phụ:
Để đơn giản hóa biểu thức, ta đặt:
Biểu thức cần tìm giá trị lớn nhất trở thành:
2. Áp dụng bất đẳng thức:
Ta có bất đẳng thức quen thuộc:
Chứng minh: Bất đẳng thức này có thể chứng minh bằng cách khai triển bình phương và sử dụng bất đẳng thức Cauchy-Schwarz.
3. Áp dụng vào bài toán:
Từ a⁴ + b⁴ + c⁴ = 1, ta có:
Áp dụng bất đẳng thức trên cho a², b², c², ta được:
Hay:
Nhân cả hai vế với a²b²c², ta có:
Thay x, y, z vào, ta được:
4. Trở lại biểu thức cần tìm:
Ta có:
Áp dụng bất đẳng thức AM-GM cho hai số dương y/x và z/x, ta được:
Tương tự, ta cũng có:
Nhân vế theo vế của các bất đẳng thức trên, ta được:
Hay:
Từ đó suy ra:
Vậy giá trị lớn nhất của biểu thức (ab³) / (ab³ + bc³ + ca³) là 1/2.
Kết luận:
Giá trị lớn nhất của biểu thức đã cho là 1/2. Dấu bằng xảy ra khi và chỉ khi a = b = c = 1/√3.