Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)
\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)
b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)
\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)
\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)
c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)
Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)
\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)
Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)
\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)
b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)
\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)
\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)
c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)
Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)
\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)
Đáp án B.
Gọi H là trung điểm của cạnh AB. Khi đó SH ⊥ (ABCD)
Ta có SH ⊥ AB; AB ⊥ HN; HN ⊥ SH và SH = 3
Chọn hệ trục tọa độ Oxyz sao cho H trùng với O, B thuộc tia Ox, N thuộc tia Oy và S thuộc tia Oz. Khi đó: B(1;0;0), A(-1;0;0), N(0;2 3 ;0), C(1;2 3 ;0)
D(-1;2 3 ;0), S(0;0; 3 ), M( - 1 2 ; 0 ; 3 2 ), P(1; 3 ;0)
Mặt phẳng (SCD) nhận
làm một vectơ pháp tuyến; mặt phẳng (MNP) nhận
làm một vectơ pháp tuyến.
Gọi φ là góc tạo bởi hai mặt phẳng (MNP) và (SCD) thì
Phân tích phương án nhiễu.
Phương án A: Sai do HS tính đúng
nhưng lại tính sai Do đó tính được
Phương án B: Sai do HS tính đúng nhưng lại tính sai
Do đó tính được
Phương án C: Sai do HS tính đúng nhưng lại tính sai
Do đó tính được
Đáp án B.
Vẽ đường thẳng d qua B và song song với AC.
Gọi K, I lần lượt là hình chiếu của H trên d và SB, L là hình chiếu của H trên SK.
Đáp án A
Gọi H là trung điểm của AB, tam giác SAB cân tại S do đó SH⊥AB mà (SAB)⊥ (ABCD) nên SH⊥ (ABCD). Góc giữa SC và đáy là SCH =600.
Tam giác BHC vuông tại B nên
Tam giác SHC vuông tại H nên SH = SC.tanSCH
Do vậy
a: (SAB) vuông góc (ABCD)
(SAB) giao (ABCD)=AB
SI vuông góc AB
=>SI vuông góc (ABCD)
b: CD vuông góc SI
CD vuông góc IK
=>CD vuông góc (SIK)
=>(SCD) vuông góc (SIK)
Xét hệ trục tọa độ Pxyz có \(\overrightarrow{i}\uparrow\uparrow\overrightarrow{PA};\overrightarrow{j}\uparrow\uparrow\overrightarrow{BC};\overrightarrow{k}\uparrow\uparrow\overrightarrow{PS}\)
Khi đó \(A\left(a;0;0\right);C\left(-a;a\sqrt{3};0\right);D\left(a;a\sqrt{3};0\right);S\left(0;0;a\sqrt{3}\right)\)
\(\Rightarrow Q\left(\dfrac{a}{2};\dfrac{a\sqrt{3}}{2};\dfrac{a\sqrt{3}}{2}\right)\)
ptmp \(\left(ABC\right):z=0\) \(\Rightarrow\overrightarrow{n_{\left(ABC\right)}}=\overrightarrow{k}=\left(0;0;1\right)\)
Có \(\overrightarrow{AC}=\left(-2a;a\sqrt{3};0\right)\); \(\overrightarrow{AQ}=\left(-\dfrac{a}{2};\dfrac{a\sqrt{3}}{2};\dfrac{a\sqrt{3}}{2}\right)\)
\(\Rightarrow\overrightarrow{n}=\overrightarrow{n_{\left(AQC\right)}}=\left[\overrightarrow{AC},\overrightarrow{AQ}\right]=\left(\dfrac{3a^2}{2};a^2\sqrt{3};-\dfrac{a^2\sqrt{3}}{2}\right)\)
Gọi \(\alpha=\widehat{\left(ABC\right),\left(AQC\right)}=\widehat{\overrightarrow{n_{ABC}},\overrightarrow{n_{AQC}}}=\widehat{\overrightarrow{n},\overrightarrow{k}}\)
\(\Rightarrow\cos\alpha=\dfrac{\left|\overrightarrow{n}.\overrightarrow{k}\right|}{\left|\overrightarrow{n}\right|\left|\overrightarrow{k}\right|}=\dfrac{\dfrac{a^2\sqrt{3}}{2}}{\sqrt{\left(\dfrac{3a^2}{2}\right)^2+\left(a^2\sqrt{3}\right)^2+\left(-\dfrac{a^2\sqrt{3}}{2}\right)^2}\sqrt{0^2+0^2+1}}\)
\(=\dfrac{\sqrt{2}}{4}\)
\(\Rightarrow\alpha\approx69,3^o\)