K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

Đa thức \(K\left(x\right)=6x^3-2x^2-ax-2\)chia hết cho nhị thức 2x - 3 khi \(\frac{3}{2}\)là nghiệm của K(x)

hay \(K\left(\frac{3}{2}\right)=0\Leftrightarrow6.\left(\frac{3}{2}\right)^3-2.\left(\frac{3}{2}\right)^2-\frac{3}{2}a-2=0\)

\(\Leftrightarrow\frac{81}{4}-\frac{9}{2}-\frac{3}{2}a-2=0\Leftrightarrow\frac{3}{2}a=\frac{55}{4}\)

\(\Leftrightarrow a=\frac{55}{6}\)

Vậy \(a=\frac{55}{6}\)thì \(6x^3-2x^2-ax-2\)chia hết cho  2x - 3

15 tháng 10 2017

đặt

\(f\left(x\right)=6x^3-2x^2-ax-2\)

\(g\left(x\right)=2x-3\)

để \(f\left(x\right)⋮g\left(x\right)\)

thì f(x) =0 với nghiệm của g(x)

\(\Rightarrow f\left(\dfrac{3}{2}\right)=6.\left(\dfrac{3}{2}\right)^3-2.\left(\dfrac{3}{2}\right)^2-a\left(\dfrac{3}{2}\right)-2=0\\ \Leftrightarrow\dfrac{81}{4}-\dfrac{9}{2}-\dfrac{3a}{2}-2=0\\ \Leftrightarrow\dfrac{3a}{2}=-\dfrac{55}{4}\\ \Rightarrow a=-\dfrac{55}{6}\)

27 tháng 10 2022

\(6x^3-2x^2-ax-2⋮2x-3\)

\(\Leftrightarrow6x^3-9x^2+7x^2-10.5x+\left(a+10.5\right)\cdot x-\left(1.5a+15.75\right)+1.5a-13.75⋮2x-3\)

=>1,5a-13,75=0

=>1,5a=13,75

=>a=55/6

24 tháng 10 2021

Ta có x3 + ax + b \(⋮\)x2 - 2x - 3

<=> x3 + ax + b \(⋮\)(x - 3)(x + 1) 

=> x = 3 và x = -1 là nghiệm của x3 + ax + b

Khi đó 33 + 3a + b = 0 

<=> 3a + b = -27 (1) 

Lại có -13 - a + b = 0

<=> -a + b = 1 (2)

Từ (1) và (2) => a = -7 ; b = -6

Vậy a = -7 ; b = -6 thì x3 + ax + b \(⋮\)x2 - 2x - 3

1 tháng 11 2020

Mình nghĩ là sửa A = 2x3 + 7x2 + ax + 3 thì sẽ hợp lí hơn :)

A = 2x3 + 7x2 + ax + 3

B = ( x + 1 )2 = x2 + 2x + 1

A bậc 3, B bậc 2 => Thương bậc 1

Hệ số cao nhất của A là 2, hệ số cao nhất của B là 1 => Hệ số cao nhất của thương là 1

Hệ số tự do của A là 3, hệ số tự do của B là 1 => Hệ số tự do của thương là 3

=> Đặt thương là C = 2x + 3

Khi đó A chia hết cho B

⇔ A = BC

⇔ 2x3 + 7x2 + ax + 3 = ( 2x + 3 )( x2 + 2x + 1 )

⇔ 2x3 + 7x2 + ax + 3 = 2x3 + 4x2 + 2x + 3x2 + 6x + 3

⇔ 2x3 + 7x2 + ax + 3 = 2x3 + 7x2 + 8x + 3

⇔ a = 8

Vậy a = 8

21 tháng 4 2019

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....