K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8

Từ đk đề bài \(\Rightarrow y⋮3\Rightarrow y=3z\left(z\inℤ\right)\)

Nếu \(z=0\Rightarrow y=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)

Nếu \(z=1\Rightarrow y=3\Rightarrow3x^2+2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\left(loại\right)\end{matrix}\right.\)

Nếu \(z=-1\Rightarrow y=-3\Rightarrow9x^2+6x+3=0,\) vô nghiệm

Xét \(\left|z\right|\ge2\)

pt đã cho \(\Leftrightarrow9x^2+6x+1=y^3+1\)

\(\Leftrightarrow\left(3x+1\right)^2=\left(y+1\right)\left(y^2-y+1\right)\)

\(\Leftrightarrow\left(3x+1\right)^2=\left(3z+1\right)\left(9z^2-3z+1\right)\) (*)

Ta tính \(ƯCLN\left(3z+1,9z^2-3z+1\right)\)

Theo thuật toán Euclid, có \(ƯCLN\left(a,b\right)=ƯCLN\left(a,b+k.a\right)\) với \(k\inℤ\) bất kì.

Chọn \(a=3z+1,b=9z^2-3z+1,k=-\left(3z-1\right)\), ta được:

\(ƯCLN\left(3z+1,9z^2-3z+1\right)\)

\(=ƯCLN\left(3z+1,9z^2-3z+1-\left(3z-1\right)\left(3z+1\right)\right)\)

\(=ƯCLN\left(3z+1,9z^2-3z+1-9z^2+1\right)\)

\(=ƯCLN\left(3z+1,3z+2\right)\)

\(=1\) 

Do đó \(ƯCLN\left(3z+1,9z^2-3z+1\right)\)

Như vậy từ (*), ta thấy \(\left(3z+1\right)\left(9z^2-3z+1\right)\) là SCP thì \(3z+1\) và \(9z^2-3z+1\) đều phải là SCP.

Tuy nhiên \(9z^2-3z+1=y^2-y+1\). Vì \(\left(y-1\right)^2=y^2-2y+1< y^2-y+1< y^2\) với \(\left|y\right|\ge6\) nên \(9z^2-3z+1\) không thể là SCP, điều này vô lý.

 Vậy với \(\left|z\right|\ge2\) thì pt đã cho không có nghiệm nguyên. Do đó pt chỉ có các nghiệm \(\left(x,y\right)\) là \(\left(0,0\right);\left(-1,3\right)\)

 

 

 

 

30 tháng 8

Cái chỗ "Do đó \(ƯCLN\left(3z+1,9z^2-3z+1\right)\)" là \(=1\) nhé.

3 tháng 7 2023

đề bài của bài này là tính thuii ạ

3 tháng 7 2023

a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)

b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)

c) \(-x^3+9x^2-27x+27\)

\(=-\left(x^3-9x^2+27x-27\right)\)

\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)

d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)

k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)

f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)

\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)

26 tháng 12 2019

12 tháng 5 2022

`M=-9x^2+6x-3`

`M=-(9x^2-6x+3)`

`M=-(9x^2-6x+1+2)`

`M=-(3x-1)^2-2`

Vì `-(3x-1)^2 <= 0 AA x`

`<=>-(3x-1)^2-2 <= -2 AA x`

  Hay `M <= -2 AA x`

Dấu "`=`" xảy ra `<=>(3x-1)^2=0<=>3x-1=0<=>x=1/3`

Vậy `GTLN` của `M` là `-2` khi `x=1/3`

12 tháng 5 2022

\(M=-9x^2+6x-3\)

\(M=-\left(9x^2-6x+3\right)\)

\(M=-\left[\left(3x-1\right)^2+2\right]\)

\(M=-\left(3x-1\right)^2-2\)

\(\Rightarrow Max_M=-2\) khi \(3x-1=0\)

                                 \(\Leftrightarrow x=\dfrac{1}{3}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

a) Ta có: \(A=\left(4-x\right)\left(16+4x+x^2\right)-\left(4-x\right)^3\)

\(=64-x^3+\left(x-4\right)^3\)

\(=64-x^3+x^3-12x^2+48x-64\)

\(=-12x^2+48x\)

b) Ta có: \(B=\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(9x^2+6x+4\right)\)

\(=27x^3+8-27x^3+8\)

=16

c) Ta có: \(C=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)^2\)

\(=x^3+1-x\left(x^2+2x+1\right)\)

\(=x^3+1-x^3-2x^2-x\)

\(=-2x^2-x+1\)

18 tháng 8 2021

a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)

a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)

\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

29 tháng 4 2018

4 tháng 1 2022

\(a,=3x^3y^3-3x^2y^3+3x^2y^4+3xy^5\\ b,=\left(2x^3-6x^2+10x-3x^2+9x-15\right):\left(x^2-3x+5\right)\\ =\left[2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)\right]:\left(x^2-3x+5\right)\\ =2x-3\\ c,=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)=x^2+1\)

29 tháng 10 2023

a: \(x^2-4y^2=x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)

b: \(9x^2-4=\left(3x\right)^2-2^2=\left(3x-2\right)\left(3x+2\right)\)

c: \(16-y^2=4^2-y^2=\left(4-y\right)\left(4+y\right)\)

d: \(\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

e: \(x^3-8=x^3-2^3=\left(x-2\right)\left(x^2+2x+4\right)\)

f: \(27x^3-y^3=\left(3x\right)^3-y^3=\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

29 tháng 10 2023

dạ câu c sai đề á a bucminh