K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8

a) Đúng vì \(M,N\in\left(ABC\right)\cap\left(MNP\right)\)

b) Đúng vì \(C,D\in\left(ACD\right)\cap\left(BCD\right)\)

c) Đúng vì \(E\in CD\) và \(E\in NP\subset\left(MNP\right)\)

d) Sai. Qua P kẻ đường thẳng song song với AB cắt AD tại F. Khi đó F mới là giao điểm của AD và mp(MNP).

17 tháng 6 2017

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

⇒ NP và CD không song song với nhau.

Gọi giao điểm NP và CD là I.

I ∈ NP ⇒ I ∈ (MNP).

Mà I ∈ CD

Vậy I ∈ CD ∩ (MNP)

b) Trong mặt phẳng (ACD) thì AD và MI cắt nhau tại điểm J:

J ∈ AD ⇒ J ∈ (ACD)

J ∈ MI ⇒ J ∈ (MNP)

Vậy J là một điểm chung của hai mặt phẳng (ACD) và (MNP).

Ta đã có M là một điểm chung của hai mặt phẳng (ACD) và (MNP).

 

Vậy MJ = (ACD) ∩ (MNP).

6 tháng 6 2017

A B C D N M P K I
a) Gọi \(NP\cap CD=K\).
Do \(K\in NP\) nên \(K\in\left(MNP\right)\). Vậy K là giao điểm của CD và (MNP).
b) Do \(M\in AC\) nên \(M\in\left(MNP\right)\cap\left(ACD\right)\).
Và K là giao điểm của CD và (MNP) nên \(K\in\left(MNP\right)\cap\left(ACD\right)\).
Vì vậy MK là giao tuyến của (MNP) và (ACD).

11 tháng 4 2019

Giải bài 8 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Trong mp(ABD): MP không song song với BD nên MP ∩ BD = E.

E ∈ MP ⇒ E ∈ (PMN)

E ∈ BD ⇒ E ∈ (BCD)

⇒ E ∈ (PMN) ∩ (BCD)

Dễ dàng nhận thấy N ∈ (PMN) ∩ (BCD)

⇒ EN = (PMN) ∩ (BCD)

b) Trong mp(BCD) : gọi giao điểm EN và BC là F.

F ∈ EN, mà EN ⊂ (PMN) ⇒ F ∈ (PMN)

 

⇒ F = (PMN) ∩ BC.

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

3
23 tháng 6 2016

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

23 tháng 6 2016

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

31 tháng 3 2017

a) Ta có E, N ∈ (MNP) ⋂ (BCD)

=> (PMN) ⋂ (BCD) = EN.

b) Gọi Q là giao điểm của NE và BC thì Q là giao điểm của (PMN) và BC.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: MP cắt BC tại E mà BC thuộc (BCD)

Nên: E là giao điểm của đường thẳng MP với mặt phẳng (BCD). 

b) Ta có: EN cắt CD tại Q mà EN thuộc (MNP) 

Nên: Q là giao điểm của đường thẳng CD với mặt phẳng (MNP).

c) Ta có: P thuộc (MNP) và (ACD)

Q thuộc (MNP) và (ACD)

Nên PQ là giao tuyến của mặt phẳng (ACD) với mặt phẳng (MNP). 

d) △ACN có: \(\dfrac{AP}{AC}=\dfrac{AG}{AN}=\dfrac{2}{3}\)

Suy ra: PG // CN 

Do đó: △PIG đồng dạng với △NIC

Do đó: C, I, G thẳng hàng. 

22 tháng 9 2023

Tham khảo:

a) Xét trên mp(BCD): NP cắt CD tại I

I thuộc NP suy ra I nằm trên mp(MNP)

Suy ra giao điểm của CD và mp(MNP) là I

b) Ta có I, M đều thuộc mp(ACD) suy ra IM nằm trên mp(ACD)

I, M đều thuộc mp(MNP) suy ra IM nằm trên mp(MNP)

Do đó, IM là giao tuyến của 2 mp(ACD) và mp(MNP) hay EM là giao tuyến của 2 mp(ACD) và mp(MNP).

16 tháng 9 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Tìm giao tuyến của mp(IBC) và mp(KAD).

Ta có:

K ∈ BC ⇒ K ∈ (IBC) ⇒ K ∈ (IBC) ∩ (KAD)

I ∈ AD ⇒ I ∈ (KAD) ⇒ I ∈ (IBC) ∩ (KAD)

Vậy KI = (IBC) ∩ (KAD)

b) Trong mp(ABD) gọi BI ∩ DM = P

⇒ P ∈ (IBC) ∩ (DMN)

Trong mặt phẳng (ACD) gọi CI ∩ DN = Q

⇒ Q ∈ (IBC) ∩ (DMN)

Vậy (IBC) ∩ (DMN) = PQ.