Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
=(x+y+z)(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)
=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)
b: a+b+c<>0
A=(a+b+c)^3-a^3-b^3-c^3/a+b+c
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)/(a+b+c)
=a^2+b^2+c^2-ab-ac-bc
=1/2[a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2]
=1/2[(a-b)^2+(b-c)^2+(a-c)^2]>=0
Cho các số a, b, c thỏa mãn a^3+ b^3+ c^3= 3abc với a, b, c khác 0. Chứng minh a+ b+c = 0 hoặc a=b=c
a3 + b3 + c3 = 3abc
⇒ a3 + b3 + c3 - 3abc = 0
⇒ ( a3 + b3 ) + c3 - 3abc = 0
⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
⇒ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
+) a2 + b2 + c2 - ab - bc - ac = 0
⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
VT ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi a = b = c
⇒ a + b + c = 0 hoặc a = b = c ( đpcm )
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
Rất khủng khiếp (tại cái chương trình của em nó xấu:v) nhưng nó là một cách chứng minh:
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{27\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\ge\frac{27\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\)
Sau khi quy đồng, ta cần chứng minh biểu thức sau đây không âm:
Hiển nhiên đúng vì \(x=min\left\{x,y,z\right\}\)
ĐK: a,b,c \(\ne\) 0
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Lại có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
Với \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}\)
\(\Rightarrow\) \(\dfrac{1}{b}+\dfrac{1}{c}=0\) \(\Rightarrow\) \(\dfrac{b+c}{bc}=0\) \(\Rightarrow\) b + c = 0 (vì bc \(\ne\) 0 do a,b,c \(\ne\) 0)
\(\Rightarrow\) b = -c \(\Rightarrow\) b5 = (-c)5 \(\Rightarrow\) b5 + c5 = 0
Thay b5 + c5 = 0 vào M ta được:
M = (a19 + b19).(b5 + c5).(c2001 + a2001)
M = (a19 + b19).0.(c2001 + a2001)
M = 0 (đpcm)
Chúc bn học tốt!
ĐKXĐ: \(a,b,c>0;b+c>a\)
Bình phương 2 vế của đk đã cho, ta được:
\(b+2\sqrt{bc}+c=a+b+c-a+2\sqrt{a\left(b+c-a\right)}\)
\(\Leftrightarrow\sqrt{bc}=\sqrt{a\left(b+c-a\right)}\)
\(\Leftrightarrow bc=a\left(b+c-a\right)\)
\(\Leftrightarrow bc=ab+ac-a^2\)
\(\Leftrightarrow a^2-ab-ac+bc=0\)
\(\Leftrightarrow a\left(a-b\right)-c\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=c\end{matrix}\right.\), ta có đpcm.