
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


M=2+22+23+24+...+220
M=(2+22+23+24)+...+(217+218+219+220)
M=1.(2+22+23+24)+...+216.(2+22+23+24)
M=1.30+...+216.30
M=30.(1+...+216)
Vì 30 chia hết cho 10
=> 30.(1+...+216) chia hết cho 10 hay M chia hết cho 10
Vậy M = 2+22+23+24+...+220 chia hết cho 10.
_HT_
M = 2 + 2^2 + 2^3 + ... + 2^20
M . 2 = 2^2 + 2^3 + 2^4 + ... + 2^21
M . 2 - M = (2^2 + 2^3 + 2^4 + ... + 2^21) - (2 + 2^2 + 2^3 + ... + 2^20)
M = 2^21 - 2
M = 2^20 . 2 - 2
M = (2^4)^5 . 2 - 2
M = 16^5 . 2 -2
M = ...6 . 2 - 2 (... 6 khi viết vào bài bạn nhớ thêm dấu gạch ngang trên đầu nhé!)
M = ...2 - 2 (Ở đây cũng thêm dấu gạch ngang trên đầu số ...12 nhé!)
M = ...0 (Thêm dấu gạch ngang trên đầu)
=> M chia hết cho 10
=> ĐPCM

\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)

Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath

Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.

\(\Leftrightarrow M=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(\Leftrightarrow M=30+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\)
\(\Leftrightarrow M=30+2^4.30+...+2^{16}.30\)
\(\Leftrightarrow M=30\left(1+2^4+...+2^{16}\right)⋮5\)
\(M=\left(2+2^2+2^3+2^4\right)+...+2^{17}\left(2+2^2+2^3+2^4\right)\)
\(=30\cdot\left(1+...+2^{17}\right)⋮5\)

\(M=2+2^2+2^3+2^4+...+2^{20}\\ =\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\\ =6+2^2.6+...+2^{18}.6\\ =\left(1+2^2+...+2^{18}\right).6⋮6\)
M = 2 + 22 + 23 + ... + 220
M = 21 + 22 + 23 + ... + 220
Xét dãy số: 1; 2; 3;...; 20 dãy số này có 20 số hạng vậy M có 20 hạng tử. Vì 20 : 2 = 10 nên nhóm 2 hạng tử liên tiếp của M thành 1 nhóm thì:
M = (21 + 22) + (23 + 24) + ... + (219 + 220)
M = 6 + 22.( 2+ 22) + ... + 218(2 + 22)
M = 6 + 22.6 + ... + 218. 6
M = 6. ( 1 + 22 + ... + 218)
vì 6 ⋮ 6 nên 6.(1 + 22 + ... + 218) ⋮ 6 hay M = 2 + 22+...+220 ⋮ 6(đpcm)

\(M=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
\(M=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+...2^{19}\right)⋮3\)
\(M=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{17}+2^{19}\right)+\left(2^2+2^4\right)+...+\left(2^{18}+2^{20}\right)\)
\(M=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{17}\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(M=2.5+2^5.5+...+2^{17}.5+...+2^{18}.5⋮5\)
\(M=2+2^2+2^3+...+2^{20}\\ =\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ =1\cdot\left(2+2^2+2^3+2^4\right)+2^4\cdot\left(2+2^2+2^3+2^4\right)+...+2^{16}\cdot\left(2+2^2+2^3+2^4\right)\\ =1\cdot30+2^4\cdot30+...+2^{16}\cdot30\\ =30\cdot\left(1+2^4+...+2^{16}\right)\\ =3\cdot10\cdot\left(1+2^4+...+2^{16}\right)⋮10\left(đpcm\right)\)
`2+2^2+...+2^20`
`=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)`
`=(2+8)+2^2*(2+8)+...+2^18*(2+8)`
`=10+2^2*10+...+2^18*10`
`=10*(1+2^2+...+2^18)` chia hết cho 10
`=>2+2^2+...+2^20` chia hết cho 10