
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có :
\(x^3+x^2z+y^2z-xyz+y^3\)
\(=x^3+y^3+x^2z+y^2z-xyz\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2+y^2-xy\right)\)
\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)
\(=0\left(x^2-xy+y^2\right)\)
\(=0\left(ĐPCM\right)\)

Lời giải:
Ta có:
\(x^3+x^2z+y^2z-xyz+y^3=(x^3+y^3)+(x^2z+y^2z-xyz)\)
\(=(x+y)(x^2-xy+y^2)+z(x^2+y^2-xy)\)
\(=(x^2-xy+y^2)(x+y+z)=(x^2-xy+y^2).0=0\)
Ta có đpcm.

a)
Ta có :
\(\left(y+2z-3\right)\left(y-2z-3\right)\)
\(=\left[\left(y-3\right)+2z\right]\left[\left(y-3\right)-2z\right]\)
\(=\left(y-3\right)^2-2z^2\)
b)
Ta có :
\(\left(x-y+6\right)\left(x+y-6\right)\)
\(=\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)
\(=x^2-\left(y-6\right)^2\)


a, \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)
b, \(\left(y+2z-3\right)\left(y-2z-3\right)=\left(y-3+2z\right)\left(y-3-2z\right)=\left(y-3\right)^2-\left(2z\right)^2\)
c, \(\left(x-y-6\right)\left(x+y-6\right)=\left(x-6-y\right)\left(x-6+y\right)=\left(x-6\right)^2-y^2\)
d, \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z+x\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)

x3 + x2z + y2z - xyz +y3
= (x3 + y3) + (x2z + y2z - xyz)
= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)
=(x2 - xy + y2)(x + y +z)

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
\(\left(y+2z-3\right)\left(y-2z-3\right)\\ =\left[\left(y-3\right)+2z\right]\left[\left(y-3\right)-2z\right]\\ =\left(y-3\right)^2-\left(2z\right)^2\\ =y^2-6y+9-4z^2\)
\(=\left(y-3+2z\right)\left(y-3-2z\right)\)
\(=\left(y-3\right)^2-\left(2z\right)^2\)
\(=y^2-6y+9-4z^2\)