
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(2x+y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2+4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left(8x^2+2y^2\right)\)
\(=\left(2x+y\right)\left(4x+y\right).2xy\)

a. \(3xy+x+15y+15=x\left(3y+1\right)+15\left(y+1\right)=\left(x+15\right)\left(3y+1\right)\)
b.\(9-x^2-2xy-y^2=9-\left(x+y\right)^2=\left(3+x+y\right)\left(3-x-y\right)\)
c.\(x^3-5x^2+x-5=x^2\left(x-5\right)+\left(x-5\right)=\left(x^2+1\right)\left(x-5\right)\)
d.\(x^2-2xy+y^2-1=\left(x-y\right)^2-1=\left(x-y+1\right)\left(x-y-1\right)\)
\(\left(5x-1\right)=\left(1-5x\right)^2\)
\(\left(5x-1\right)=\left(5x-1\right)^2\)
\(\left(5x-1\right)\left(1-5x+1\right)=0\)
\(\left(5x-1\right)\left(2-5x\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{2}{5}\end{array}\right.\)

ax - ay + bx - by= (ax - ay) + (bx - by)
= a(x - y) + b(x - y)
= (x - y)(a + b)
x2 - 2xy + y2 - 1= (x2 - 2xy + y2) - 12
= (x - y)2 - 12
= (x - y - 1)(x - y + 1)
9 - x2 - 2xy - y2 = 32 - ( x2 + 2xy + y2 )
= 32 - ( x + y)2
= ( 3 - ( x + y)).(3 + ( x + y))
= (3 - x - y)(3 + x + y)

Lời giải:
a)
$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$
$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$
$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$
$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$
$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:
$(x-y-z)^2=(y-z)^2=(z-3)^2=0$
$\Rightarrow z=3; y=3; x=6$
b)
$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$
$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$
$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$
$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$
$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)
$\Leftrightarrow y=z=-3; x=4$

Cách 1 :
x−y=7→x=y+7x−y=7→x=y+7
Thay x = y + 7 vào A, ta có :
A=(y+7)(y+9)−2y−2y(y+7)+37A=(y+7)(y+9)−2y−2y(y+7)+37
\Leftrightarrow A=102−y2=(10−y)(10+y)A=102−y2=(10−y)(10+y)
Cách 2 :
A=x2+2x−2y−2xy+37A=x2+2x−2y−2xy+37
=x2−2xy+y2+2x−2y+37−y2=x2−2xy+y2+2x−2y+37−y2
=(x−y)2+2(x−y)+37−y2=(x−y)2+2(x−y)+37−y2
=72+2.7+37−y2=102−y2=72+2.7+37−y2=102−y2
=(10−y)(10+y)

a) (x+y+x_y).(x+y_x+y)
b ) (( x + y )+(x _ y))2
d ) 8x3 + y3 _ 8x3 + y3 =2y3
\(9-x^2-2xy-y^2\)
\(=9-\left(x^2+2xy+y^2\right)\)
\(=9-\left(x+y\right)^2\)
\(=\left(3+x+y\right)\left(3-x-y\right)\)
\(9-x^2-2xy-y^2\\ =3^2-\left(x^2+2xy+y^2\right)\\ =3^2-\left(x+y\right)^2\\ =\left(3-x-y\right)\left(3+x+y\right)\)