\(\dfrac{a}{a^2}\)-\(\dfrac{1}{a}\))...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2024

\(b,\left(\dfrac{a}{a^2}-\dfrac{1}{a}\right):\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\\ =\left(\dfrac{1}{a}-\dfrac{1}{a}\right):\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\\ =0:\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\\ =0\)

5 tháng 6 2018

đề sai

5 tháng 6 2018

Đúng mà

15 tháng 12 2018

ta có

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a+b+c}{abc}\right)=4\) (vì a+b=c=abc)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)

\(\Leftrightarrow M=2\)

20 tháng 1

hêlô

9 tháng 9 2017

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

=\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a+b+c}{abc}\right)\)

mà a+b+c=0

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{0}{abc}\right)=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

9 tháng 9 2017

cảm ơn bạnvui

19 tháng 12 2017

Ribi Nkok Ngok lê thị hương giang Nguyễn Huy Tú Nguyễn Nam Vũ Elsa

29 tháng 6 2017

https://olm.vn/hoi-dap/question/125053.html

BN THAM KHỎA LINK NÀY NHÉ BÀI NÀY TƯƠNG TỰ NAK

3 tháng 7 2018

\(1.\) Giả sử : \(a\ge b\ge c\Rightarrow a+b\ge a+c\ge b+c\)

Ta có : \(\dfrac{c}{a+b}\le\dfrac{c}{b+c};\dfrac{b}{a+c}\le\dfrac{b}{b+c};\dfrac{a}{b+c}=\dfrac{a}{b+c}\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\le\dfrac{b+c}{b+c}+\dfrac{a}{b+c}=1+\dfrac{a}{b+c}< 1+1=2\left(đpcm\right)\)

\(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\)

\(\Leftrightarrow x^2y+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2=0\)

\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)y\left(x+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

+) Với : \(x=-y\) , ta có :

Đpcm \(\Leftrightarrow-\dfrac{1}{y^{2011}}+\dfrac{1}{y^{2011}}+\dfrac{1}{z^{2011}}=\dfrac{1}{-y^{2011}+y^{2011}+z^{2011}}\)

\(\Leftrightarrow\dfrac{1}{z^{2011}}=\dfrac{1}{z^{2011}}\left(luôn-đúng\right)\)

Tương tự với 2 TH còn lại .

\(\RightarrowĐCPM\)

4 tháng 7 2017

\(a,\\ T=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{8}\right)+...+\left(1-\dfrac{1}{4096}\right)\\ T=\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\right)\)

Gọi \(D=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\)

\(2D=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2048}\\ 2D-D=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2048}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{4096}\right)\\ D=1-\dfrac{1}{4096}\)

(mk nhớ có cách khác rất hay nhưng quên mất rồi)

Thay \(D\) vào ta được

\(T=\left(1+1+1+...+1\right)-\left(1-\dfrac{1}{4096}\right)\\ T=12-\left(1-\dfrac{1}{4096}\right)\\ T=12-1+\dfrac{1}{4096}\\ T=11\dfrac{1}{4096}\)

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1