K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
24 tháng 8 2024

\(1,x^3-3x^2+3x-1\\ =x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\\ =\left(x-1\right)^3\\ 2,x^3+3x^2+3x+1\\ =x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3\\ =\left(x+1\right)^3\\ 3,8x^3+12x^2+6x+1\\ =\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3\\ =\left(2x+1\right)^3\\ 4,8x^3-12x^2+6x-1\\ =\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\\ =\left(2x-1\right)^3\\ 5,8-36x+54x^2-27x^3\\ =2^3-3\cdot2^2\cdot3x+3\cdot2\cdot\left(3x\right)^2-\left(3x\right)^3\\ =\left(2-3x\right)^3\\ 6,8+36x+54x^2+27x^3\\ =2^3+3\cdot2^2\cdot3x+3\cdot2\cdot\left(3x\right)^2+\left(3x\right)^3\\ =\left(2+3x\right)^3\\ 7,8x^3-12x^2y+6xy^2-y^3\\ =\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3\\ =\left(2x-y\right)^3\\ 8,8x^3+12x^2y+6xy^2+y^3\\ =\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\\ =\left(2x+y\right)^3\)

24 tháng 8 2024

\(1,x^3-3x^2+3x-1=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=\left(x-1\right)^3\\ 2,x^3+3x^2+3x+1=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x+1\right)^3\\ 3,8x^3+12x^2+6x+1=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3=\left(2x+1\right)^3\\ 4,8x^3-12x^2+6x-1=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1-1^3=\left(2x-1\right)^3\\ 5,8-36x+54x^2-27x^3=2^3-3\cdot2^2\cdot3x+3\cdot2\cdot\left(3x\right)^2-\left(3x\right)^3=\left(2-3x\right)^3\\ 6,8+36x+54x^2+27x^3=2^3+3\cdot2^2\cdot3x+3\cdot2\cdot\left(3x\right)^2+\left(3x\right)^3=\left(2+3x\right)^3\\ 7,8x^3-12x^2y+6xy^2-y^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\\ 8,8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3\cdot2x\cdot y+3\cdot2x\cdot y^2+y^3=\left(2x+y\right)^3\)

a) Ta có: \(x^3+12x^2+48x+64\)

\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)

\(=\left(x+4\right)^3\)

b) Ta có: \(x^3-12x^2+48x-64\)

\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)

\(=\left(x-4\right)^3\)

c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)

\(=\left(2x+y\right)^3\)

d)Sửa đề: \(x^3-3x^2+3x-1\)

Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)

\(=\left(x-1\right)^3\)

e) Ta có: \(8-12x+6x^2-x^3\)

\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)

\(=\left(2-x\right)^3\)

f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)

\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)

\(=\left(\frac{1}{3}-3y\right)^3\)

12 tháng 9 2020

thanks bạn

25 tháng 7 2018

a, x2-x+1/4=(x-1/2)2

b, (x+1)3

c,(2x+1)3

d, (2-3x03

e, (10x)2-(x2+25)2=:[10x+(x2+25)][10x-(x2+25)]=(10x+x2+25)(10x-x2-25)

Bài 2: 

a: \(A=a^2+b^2+c^2+2ab-2ac-2bc+a^2+b^2+c^2-2ab-2bc+2ac\)

\(=2a^2+2b^2+2c^2-4bc\)

\(=2+2\cdot9+2\cdot1-4\cdot3\cdot\left(-1\right)=22+12=34\)

b: \(B=\left(a+b-a+b\right)\left(a+b+a-b\right)=4ab=4\cdot2\cdot5=40\)

a)

A = \(\left(2x\right)^3+3.\left(2x\right)^2.y+3.\left(2x\right).y+y^3\)

= \(\left(2x+y\right)^3\)

b)

\(B=x^3-3.x^2.1+3.x.1-1^3\)

= \(\left(x-1\right)^3\)

7 tháng 10 2019

a) \(x^3+6x^2+12x+8\)

\(=\left(x+2\right)^3\)

b) \(x^3-3x^2+3x-1\)

\(=\left(x-1\right)^3\)

c) \(1-9x+27x^2-27x^3\)

\(=-\left(27x^3-27x^2+9x-1\right)\)

\(=-\left(3x-1\right)^3\)

7 tháng 10 2019

d) \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

\(=\left(x+\frac{1}{2}\right)^3\)

e) \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x-2y\right)^3\)

26 tháng 8 2018

Bài 1 : Phân tích các đa thức sau thành nhân tử :

a) 8x3 - 64

=(2x)3 + 43

=(2x+4)(4x2 - 8x + 16)

c) 125x3 + 1

=5x3 + 13

=(5x+1)(25x2 +5x+1)

d) 8x3 - 27

=(2x)3 - 33

=(2x - 3)(2x2 + 6x + 9)

e) 1 + 8x6y3

=1 + (2x2y)3

=(1 + 2x2y)(4x4y2 -2x2y + 1)

f) 125x3 + 27y3

=(5x)3 + (3y3)

=(5x + 3y)(25x2 - 15xy + 9y2)

26 tháng 8 2018

Bài 1

a) \(8x^3-64\)

\(=\left(2x\right)^3-4^3\)

\(=\left(2x-4\right)\left(4x^2+8x+16\right)\)

c) \(125x^3+1\)

\(=\left(5x\right)^3+1^3\)

\(=\left(5x+1\right)\left(25x^2-5x+1\right)\)
d) \(8x^3-27\)

\(=\left(2x\right)^3-3^3\)

\(=\left(2x-3\right)\left(4x^2+6x+9\right)\)

e) \(1+8x^6x^3\)

\(=1^3+\left(2x^2y\right)^3\)

\(=\left(1+2x^2y\right)\left(1-2x^2y+4x^4y^2\right)\)

f) \(125x^3+27y^3\)

\(=\left(5x\right)^3+\left(3y\right)^3\)

\(=\left(5x+3y\right)\left(25x^2-15xy+9x^2\right)\)

a) Ta có: \(3x^2-6xy+3y^2\)

\(=3\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)^2\)

b) Ta có: \(12x^5y+24x^4y^2+12x^3y^3\)

\(=12x^3y\left(x^2+2xy+y^2\right)\)

\(=12x^3y\left(x+y\right)^2\)

c) Ta có: \(64xy-96x^2y+48x^3y-8x^4y\)

\(=8xy\left(8-12x+6x^2-x^3\right)\)

\(=8xy\left(2-x\right)^3\)

d) Ta có: \(54x^3+16y^3\)

\(=2\left(27x^3+8y^3\right)\)

\(=2\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

15 tháng 9 2019

\(A=2^3-3.2^2.x+3.2.x^2-x^3\)

\(A=\left(2-x\right)^3\)

\(B=\left(2x\right)^3-2.\left(2x\right)^2.y+3.2x.y^2-y^3\)

\(B=\left(2x-y\right)^3\)

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

20 tháng 9 2019

1,5x2+10xy+5y2

=5.[x2+2xy+y2]

=5[x+y]2

2,6x2+12xy+6y2

=6[x2+2xy+y2]

=6[x+y]2

3,2x3+4x2y+2xy2

=2x[x2+2xy+y2]

=2x[x+y]2

TICK CHO MIK LÀM TÍPhiuhiu

20 tháng 9 2019

4,-3x4y-6x3y2-3x2y3

=-3yx2[x2+2xy+y2]

=-3yx2[x+y]2