Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 5a+7b chia hết cho 13
=> 35a+49b chia hết cho 13
=> 5(7a+2b)+39b chia hết cho 13
Do 39b chia hết cho 13
=> 5(7a+2b) chia hết cho 13
Mà 5 vs 13 là 2 số nguyên tố cùng nhau
=> 7a+2b chia hết cho 13. (đpcm)
Bài 2:
Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)
Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)
Nếu n>=5 thì n! sẽ có tận cùng là 0
=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3
Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)
=> Với mọi n>=5 đều loại
vậy n=3.
Bài 3:
Do 26^3 có 2 chữ số tận cùng là 76
26^5 có 2 chữ số tận cùng là 76
26^7 có 2 chữ sốtận cùng là 76
Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76
Vậy 26^2019 có 2 chữ số tận cùng là 76.

Gọi số tự nhiên N cần tìm có dạng \(\overline{abcdefg}\). Gọi tổng các chữ số là A
Vì N ko có 2 chữ số nào giống nhau nên:
1+0+2+3+4+5+6\(\le\)A\(\le\)9+7+8+6+5+4+3 hay 21\(\le\)A\(\le\)42
Mà A chia hết cho 7 => A thuộc {21, 28, 35, 42}
Trước tiên xét A =21, Sắp xếp các số a, b, c, d, e, f với các số 0, 1,2, 3, 4, 5,6 thành các số tự nhiên
Theo đề bài N là số tự nhiên nhỏ nhất ta có số đàu tiên 1023456 thử lại thì thấy 1023456 chia hết cho 7
Vì thế ta ko cần xét các trường hợp khác nữa.
Đáp án số tự nhiên N là 1023456
Bài 4:
Ta có:
`(n+3)(n+6)`
`=n^2+3n+6n+18`
`=n^2+9n+18`
`=(n^2+n)+(8n+18)`
`=n(n+1)+2(4n+9)`
`n(n+1)` là tích của hai STN liên tiếp
`=>n(n+1)` ⋮ 2 và `2(4n+9)` ⋮ 2
`=>n(n+1)+2(4n+9)` chia hết cho 2
Bài 4:
Ta xét hai trường hợp:
+) TH1: n là số tự nhiên lẻ
Khi đó n+3 là số tự nhiên chẵn
\(\Rightarrow\left(n+3\right)\left(n+6\right)⋮2\)
+) TH2: n là số tự nhiên chẵn
Khi đó n+6 là số tự nhiên chẵn
\(\Rightarrow\left(n+3\right)\left(n+6\right)⋮2\)
Vậy...