K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó:H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Ta có: \(\widehat{HAB}+\widehat{ABC}=90^0\)(AH\(\perp\)BC)

\(\widehat{HCB}+\widehat{ABC}=90^0\)(ΔCEB vuông tại E)

Do đó: \(\widehat{HAB}=\widehat{HCB}\)

c: AB là đường trung trực của HK

=>AB\(\perp\)HK tại trung điểm của HK

mà AB\(\perp\)HE tại E

nên E là trung điểm của HK, AB\(\perp\)HK tại E

Xét ΔAKH có

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAKH cân tại A

ΔAKH cân tại A

mà AB là đường cao

nên AB là phân giác của góc KAH

=>\(\widehat{KAB}=\widehat{HAB}\)

=>\(\widehat{KAB}=\widehat{HCB}=\widehat{KCB}\)

19 tháng 8 2016

A B C H K

15 tháng 6 2017

vÌ H LÀ giao điểm củabd và ce => h là trực tâm=>ah vuông góc bc .

     gọi e là giao điểm ah vf bc.   ta có  góc bae +abc=90 

                                                         góc abc+kcb=90

                       => bah=kcb     1

                        ab là đường trung trực hk

                        => ak=ah=> tam giác akh cân => ab đồng thời là đương phân giác => kab=hab                2

                             tuw1 vaf2 => kab=kcb

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
20 tháng 7 2017

mk nha bn

15 tháng 6 2020

tự kẻ hình

a) xét tam giác BEC và tam giác CDB có

BC chung

BEC=CDB(=90 độ)

ABC=ACB( tam giác ABC cân A)

=> tam giác BEC= tam giác CDB(ch-gnh)

=> BD=CE( hai cạnh tương ứng)

b) từ tam giác BEC= tam giác CDB=> DBC=ECB(hai góc tương ứng)

=> tam giác HBC cân H

c) đặt O là giao điểm của AH với BC

vì AH,BD,CE cùng giao nhau tại H mà BD, CE là đường cao=> AH là đường cao ( 3 đường cao cùng đi qua một điểm)

vì HBC cân H=> HB=HC

xét tam giác HOB và tam giác HOC có

HB=HC(cmt)

HBO=HCO(cmt)

HOB=HOC(=90 độ)

=> tam giác HOB= tam giác HOC(ch-gnh)

=> BO=CO( hai cạnh tương ứng)

=> AH là trung trực của BC

d) xét tam giác CDB và tam giác CDK có

BD=DK(gt)

CDB=CDK(=90 độ)

DC chung

=> tam giác CDB= tam giác CDK(cgc)

=> CBD=CKD( hai cạnh tương ứng)

mà CBD=BCE=> CKD=BCE 

17 tháng 1 2022

hay quá

3 tháng 8 2017

Nguyễn Diệu Linh.

Cho tam giác ABC cân tại A,BD vuông góc với AC,CE vuông góc với AB,BD và CE cắt nhau tại H,Chứng minh BD = CE,Chứng minh tam giác BHC cân,Chứng minh AH là đường trung trực của BC,Trên tia BD lấy điểm K sao cho D là trung điểm của BK,So sánh góc ECB và góc DKC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H. a) Chứng minh BD = CE. b) Chứng minh tam giác BHC cân. c) Chứng minh AH là đường trung trực của BC. d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

28 tháng 3 2018

cho hình chữ nhật  ABCD ,đường chéo BD.Từ A ve AH vuong goc BD(H thuocB)                                                                                       a)CM tam giac HAD dong dang tam giac CDB                                                                                                                                             b)CM AH.BD=AD.AB                                                                                                                                                                                     c) cho BH=9cm,HD=16cm.Tinh dien h tam giac ABC.

3 tháng 2 2016

Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh 

Câu b )  - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )

              => Góc B1 = góc C1 ( 2 góc tương ứng )

              - Vì tam giác ABC là tam giác cân => góc B = góc C 

               Ta có góc B1 + góc B2 = góc C1 + C2 

               => Góc B2 = góc C2 

               - Vậy tam giác HBC là tam giác cân 

               Câu c )              

            

20 tháng 7 2017

A B C D E H K M