Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài toán = 17819/2520 nha
đề dài nên tính máy cho nhanh
ht
1/2 +2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + 9/10 x ( 3/4 x 8/6 ) : ( 1/5 : 1/5 )
= 1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + 9/10 x 1
= 17819/2520
HT~

1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha

theo mk là
A thì = tất cả các phân số có tử bé hơn mẫu lên cho là bé hơn 1
B = 3
vậy B > A
Tính làm sao cũng được
tùy theo cách tính ( tự tìm A)
theo tui tính
A=3
B=3
=> A=B

Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)

\(A=3+4+5+6+7+8+9+10+11\)
\(\Rightarrow A=\left(3+11\right)+\left(4+10\right)+\left(5+9\right)+\left(6+8\right)+7\)
\(\Rightarrow A=14+14+14+14+7\)
\(\Rightarrow A=14\times4+7\)
\(\Rightarrow A=56+7\)
\(\Rightarrow A=63\)
\(B=15.37.4+120.21+21.5.12\)
\(\Rightarrow B=60.37+60.2.21+21.60\)
\(\Rightarrow B=60.\left(37+2.21+21\right)\)
\(\Rightarrow B=60.100\)
\(\Rightarrow B=6000\)

\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha

(dấu . là dấu nhân )
a, \(\frac{3}{2}\cdot\frac{4}{7}+\frac{3}{7}\cdot\frac{3}{2}\)
= \(\frac{3}{2}\left(\frac{4}{7}+\frac{3}{7}\right)\)
=\(\frac{3}{2}\cdot\frac{7}{7}=\frac{3}{2}\)
b, \(\frac{12}{5}\cdot4-4\cdot\frac{7}{5}\)
=\(4\left(\frac{12}{5}-\frac{7}{5}\right)=4\cdot\frac{5}{5}=4\)
c, \(\frac{5}{11}:\frac{1}{2}+\frac{6}{11}:\frac{1}{2}\)
=\(2\left(\frac{5}{11}+\frac{6}{11}\right)=2\cdot\frac{11}{11}=2\)
a;3/2x(4/7+3/7)
=3/2x1
=3/2
b;12/5x4-4x7/5
=4x(12/5-7/5)
=4x1
=4
c;5/11:1/2+6/11:1/2
=1/2:(5/11+6/11)
=1/2:1
=1/2

a) SSH : (101 - 2) : 1 + 1 = 100
=> Tổng : \(\frac{\left(2+101\right)\cdot100}{2}=5150\)
b) SSH : (201 - 101) : 2 + 1 = 51
=> Tổng : \(\frac{\left(101+201\right)\cdot51}{2}=7701\)
c) SSH : (293 - 5) : 3 + 1 = 97
=> Tổng : \(\frac{\left(5+293\right)\cdot97}{2}=14453\)
P/S : Đề bài là gì ?? '-'
\(a,\dfrac{1}{2\times4}+\dfrac{1}{4\times6}+\dfrac{1}{6\times8}+...+\dfrac{1}{98\times100}\\ =\dfrac{1}{2}\times\left(\dfrac{2}{2\times4}+\dfrac{2}{4\times6}+\dfrac{2}{6\times8}+...+\dfrac{2}{98\times100}\right)\\ =\dfrac{1}{2}\times\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\times\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\times\dfrac{49}{100}\\ =\dfrac{49}{200}\)
\(b,\dfrac{5}{3\times5}+\dfrac{5}{5\times7}+...+\dfrac{5}{103\times105}\\ =\dfrac{5}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{103\times105}\right)\\ =\dfrac{5}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-...-\dfrac{1}{103}+\dfrac{1}{103}-\dfrac{1}{105}\right)\\ =\dfrac{5}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{105}\right)\\ =\dfrac{5}{2}\times\dfrac{34}{105}\\ =\dfrac{17}{21}\)
\(a,\dfrac{1}{2\times4}+\dfrac{1}{4\times6}+\dfrac{1}{6\times8}+...+\dfrac{1}{98\times100}\\ =\dfrac{1}{2}\times\left(\dfrac{2}{2\times4}+\dfrac{2}{4\times6}+...+\dfrac{2}{98\times100}\right)\\ =\dfrac{1}{2}\times\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\times\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\times\dfrac{49}{100}\\ =\dfrac{49}{200}\\ b,\dfrac{5}{3\times5}+\dfrac{5}{5\times7}+...+\dfrac{5}{163\times165}\\ =\dfrac{5}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{163\times165}\right)\\ =\dfrac{5}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{163}-\dfrac{1}{165}\right)\\ =\dfrac{5}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{165}\right)\\ =\dfrac{5}{2}\times\dfrac{54}{165}\\ =\dfrac{9}{11}\)