K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8

`e)x^2-xy+x-y`

`=(x^2-xy)+(x-y)`

`=x(x-y)+(x-y)`

`=(x-y)(x+1)`

`f)xz+yz-5(x+y)`

`=z(x+y)-5(x+y)`

`=(x+y)(z-5)` 

e) \(x^2-xy+x-y\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+1\right)\)

f) \(xz+yz-5\left(x+y\right)\)

\(=z\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(z-5\right)\)

14 tháng 10 2020

1) \(4x^2-7x-2=4x^2-8x+x-2=\left(4x^2-8x\right)+\left(x-2\right)\)

\(=4x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(4x+1\right)\)

2) \(4x^2+5x-6=4x^2+8x-3x-6=\left(4x^2+8x\right)-\left(3x+6\right)\)

\(=4x\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(4x-3\right)\)

3) \(5x^2-18x-8=5x^2-20x+2x-8=\left(5x^2-20x\right)+\left(2x-8\right)\)

\(=5x\left(x-4\right)+2\left(x-4\right)=\left(x-4\right)\left(5x+2\right)\)

4) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

\(=xy\left(x+y\right)-y^2z-yz^2+x^2z-xz^2\)

\(=xy\left(x+y\right)+\left(x^2z-y^2z\right)-\left(yz^2+xz^2\right)\)

\(=xy\left(x+y\right)+z\left(x^2-y^2\right)-z^2.\left(x+y\right)\)

\(=xy\left(x+y\right)+z\left(x-y\right)\left(x+y\right)-z^2\left(x+y\right)\)

\(=xy\left(x+y\right)+\left(zx-zy\right)\left(x+y\right)-z^2\left(x+y\right)\)

\(=\left(x+y\right)\left(xy+xz-yz-z^2\right)=\left(x+y\right).\left[x\left(y+z\right)-z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(x-z\right)\)

14 tháng 10 2020

1) 4x2 - 7x - 2 = 4x2 - 8x + x - 2 = 4x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 4x + 1 )

2) 4x2 + 5x - 6 = 4x2 - 8x + 3x - 6 = 4x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 4x + 3 )

3) 5x2 - 18x - 8 = 5x2 - 20x + 2x - 8 = 5x( x - 4 ) + 2( x - 4 ) = ( x - 4 )( 5x + 2 )

4) xy( x + y ) - yz( y + z ) + xz( x - z )

= x2y + xy2 - y2z - yz2 + xz( x - z )

= ( x2y - yz2 ) + ( xy2 - y2z ) + xz( x - z )

= y( x2 - z2 ) + y2( x - z ) + xz( x - z )

= y( x - z )( x + z ) + y2( x - z ) + xz( x - z )

= ( x - z )[ y( x + z ) + y2 + xz ]

= ( x - z )( xy + yz + y2 + xz )

= ( x - z )[ ( xy + y2 ) + ( xz + yz ) ]

= ( x - z )[ y( x + y ) + z( x + y ) ]

= ( x - z )( x + y )( y + z )

5) xy( x + y ) + yz + xz( x + z ) + 2xyz ( đề có thiếu không vậy .-. )

8 tháng 12 2015

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

14 tháng 8 2017

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

.

.

.

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

25 tháng 7 2019

\(xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)\)

\(=xy\left(x-y\right)+yz\left[\left(y-x\right)-\left(z-x\right)\right]+xz\left(z-x\right)\)

\(=xy\left(x-y\right)-yz\left(x-y\right)-yz\left(z-x\right)+xz\left(z-x\right)\)

\(=\left(x-y\right)\left(xy-yz\right)-\left(z-x\right)\left(yz-xz\right)\)

\(=\left(x-y\right)\left(xy-yz\right)+\left(z-x\right)\left(xz-yz\right)\)

\(=\left(xy-yz\right)\left(x-y+z-x\right)\)

\(=\left(xy-yz\right)\left(-y+z\right)\)

mơn bn nha ^^

nh sáng nay lên lp thầy chữa bài thì kq nó k như z, cả cách lm nx :v

kq là: ( z - y )( x - z)( y - x )

4 tháng 9 2015

 

xy(x-y)+yz(y-z)+xz(x-z)

=y.[x.(x-y)+z.(y-z)]+xz(x-z)

=y.(x2-xy+zy-z2)+xz.(x-z)

=y.[(x2-z2)+(-xy+zy)]+xz.(x-z)

=y.[(x-z)(x+z)-y.(x-z)]+xz.(x-z)

=y.(x-z)(x+z-y)+xz.(x-z)

=(x-z)[y.(x+z-y)+xz]

=(x-z)(xy+yz-y2+xz)

 

28 tháng 9 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 
= xy(x + y) + yz(y + z + x) + xz(x + z + y) 
= xy(x + y) + z(x + y + z)(y + x) 
= (x + y)(xy + zx + zy + z2
= (x + y)[x(y + z) + z(y + z)] 
= (x + y)(y + z)(z + x)

28 tháng 9 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

22 tháng 10 2021

\(a,=\left(xy-1-x-y\right)\left(xy-1+x+y\right)\\ b,Sửa:a^3+2a^2+2a+1\\ =a^3+a^2+a^2+a+a+1=\left(a+1\right)\left(a^2+a+1\right)\\ c,=1-4a^2-a\left(a^2-4\right)=1-4a^2-a^3+4a\\ =\left(1-a\right)\left(1+a+a^2\right)+4a\left(1-a\right)\\ =\left(1-a\right)\left(1+5a+a^2\right)\\ d,=\left(a^2-a^2b^2\right)+\left(b^2-b\right)+\left(ab-a\right)\\ =a^2\left(1-b\right)\left(1+b\right)+b\left(b-1\right)+a\left(b-1\right)\\ =\left(b-1\right)\left(-a^2-ab+b+a\right)\\ =\left(b-1\right)\left(b-1\right)\left(a+b\right)\left(1-a\right)\)

\(e,=x^2y+xy^2-yz\left(y+z\right)+x^2z-xz^2\\ =\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\\ =x^2\left(y+z\right)+x\left(y-z\right)\left(y+z\right)-yz\left(y+z\right)\\ =\left(y+z\right)\left(x^2+xy-xz-yz\right)\\ =\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

\(f,=xyz-xy-yz-xz+x+y+z-1\\ =xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(x-1\right)\\ =\left(z-1\right)\left(xy-y-x+1\right)=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)

nhờ giải giupws em với a 1. Phân tích các đa thức sau thành nhân tử: a)     5x2 – 10xy b)    3x(x – y)  –  6(x – y) c)     2x(x – y) – 4y(y – x) d)    9x2 – 9y2 e)     x2 – xy – x + y f)      xy – xz – y + z 2. Phân tích các đa thức sau thành nhân tử:  a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                          c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2 e)x2 + 10x + 25                f) 25x2 –...
Đọc tiếp

nhờ giải giupws em với a

1. Phân tích các đa thức sau thành nhân tử:

a)     5x2 – 10xy

b)    3x(x – y)    6(x – y)

c)     2x(x – y) – 4y(y – x)

d)    9x2 – 9y2

e)     x2 – xy – x + y

f)      xy – xz – y + z

2. Phân tích các đa thức sau thành nhân tử:

 a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                         

c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2

e)x2 + 10x + 25                f) 25x2 – 20xy + 4y2

      g)9x4 + 24x2 + 16             h) x3 – 125

      i)x6 – 1                            k) x3 + 15x2 + 75x + 125

3. Tìm x biết :

a) 3x2 + 8x = 0              b) 9x2 – 25 = 0          c) x3 – 16x = 0     d) x3 + x = 0.

4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6

 

1
19 tháng 12 2023

Bài `1`

\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)

Bài `3`

\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)

\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)

13 tháng 8 2018

tao có \(xz\left(z-x\right)+yz\left(y+z\right)-xy\left(x+y\right)=xz\left(z-x\right)+yz\left(y+x+z-x\right)-xy\left(x+y\right)=xz\left(z-x\right)+yz\left(z-x\right)+yz\left(x+y\right)-xy\left(x+y\right)\)

\(\left(z-x\right)\left(xz+yz\right)+\left(x+y\right)\left(yz-xy\right)=\left(z-x\right)z\left(x+y\right)+\left(x+y\right)y\left(z-x\right)=\left(z-x\right)\left(x+y\right)\left(z+y\right)\)

nếu mình giải khó hiểu thì cho mình xin lỗi nhé

13 tháng 8 2018

\(xz\left(z-x\right)+yz\left(y+z\right)-xy+\left(x+y\right)\)

\(=xz^2-x^2z+yx\left(y+z\right)-xy\left(x+y\right)\)

\(=xz^2-x^2z+zy^2+z^2y-xy\left(x+y\right)\)

\(=xz^2-x^2z+zy^2+z^2y-x^2y-xy^2\)

P/s: ko chắc