K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8

`{(-6x + 3y = -3),(-10x - y = -5 - 3xy):}`

`<=> {(-2x + y = -1),(-10x - y = -5 - 3xy):}`

`<=> {(y =2x -1),(-10x - y = -5 - 3xy):}`

`<=> {(y =2x -1),(-10x - (2x -1) = -5 - 3x(2x -1)(1)):}`

Từ (1) `<=> -10x - 2x + 1 = -5x - 6x^2 + 3x`

`<=> 6x^2 - 3x + 5 -10x - 2x + 1 = 0 `

`<=> 6x^2 - 15x + 6 = 0`

`<=> 2x^2 - 5x + 2 = 0`

`<=> (2x^2 - 4x) - (x - 2) = 0`

`<=> 2x(x-2) - (x-2) = 0`

`<=> (2x - 1)(x-2) = 0`

<=> \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Hệ phương trình <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\\y=2x-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

8 tháng 1 2021

1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)

=> Hệ có vô số nghiệm.

3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)

1 tháng 2 2021

 

\(\Leftrightarrow\left\{{}\begin{matrix}6x^2-3xy+x=1-y\left(1\right)\\x^2+y^2=1\left(2\right)\end{matrix}\right.\) Từ  (1) \(\Rightarrow6x^2-3xy+x-1+y=0\)

\(\Leftrightarrow\left(6x^2+x-1\right)-\left(3xy-y\right)=0\) \(\Leftrightarrow\left(6x^2+3x-2x-1\right)+y\left(3x-1\right)=0\) 

\(\Leftrightarrow\left(3x-1\right)\left(2x+1\right)+y\left(3x-1\right)=0\) \(\Leftrightarrow\left(3x-1\right)\left(2x+1+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\2x+y=-1\end{matrix}\right.\) 

*Nếu 3x-1=0⇔x=\(\dfrac{1}{3}\) Thay vào (2) ta được:

\(\dfrac{1}{9}+y^2=1\Leftrightarrow y^2=\dfrac{8}{9}\Leftrightarrow y=\dfrac{\pm2\sqrt{2}}{3}\)

*Nếu 2x+y=-1\(\Leftrightarrow y=-1-2x\) Thay vào (2) ta được :

\(\Rightarrow x^2+\left(-2x-1\right)^2=1\Leftrightarrow x^2+4x^2+4x+1=1\Leftrightarrow5x^2+4x=0\Leftrightarrow x\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-4}{5}\end{matrix}\right.\)

.Nếu x=0⇒y=0

.Nếu x=\(\dfrac{-4}{5}\) \(\Rightarrow y=-1+\dfrac{4}{5}=-\dfrac{1}{5}\) Vậy...

 

1 tháng 2 2021

Câu b)

\(\left\{{}\begin{matrix}2x^2-2x+xy-y=0\\x^2-3xy+4=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x\left(x-1\right)+y\left(x-1\right)\\x^2-3xy+4=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+y\right)=0\\x^2-3xy+4=0\left(2\right)\end{matrix}\right.\)

Để (x-1)(2x+y) = 0 thì: \(\left[{}\begin{matrix}x-1=0\\2x+y=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=1\\2x+y=0\end{matrix}\right.\)

Thay x=1 vào PT (2) ta có:

(2) ⇔12-3.1.y+4=0

⇔1-3y +4=0

⇔-3y+5=0

⇔y=\(\dfrac{5}{3}\)

Vậy HPT có nghiệm (x:y) = (1;\(\dfrac{5}{3}\))

 

a: =>8x+2y=4 và 8x+3y=5

=>y=1 và 4x=2-1=1

=>x=1/4 và y=1

b: 3x-2y=11 và 4x-5y=3

=>12x-8y=44 và 12x-15y=9

=>7y=35 và 3x-2y=11

=>y=5 và 3x=11+2*y=11+2*5=21

=>x=7 và y=5

c: 5x-4y=3 và 2x+y=4

=>5x-4y=3 và 8x+4y=16

=>13x=19 và 2x+y=4

=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13

d: 3x-y=5 và 5x+2y=28

=>6x-2y=10 và 5x+2y=28

=>11x=38 và 3x-y=5

=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11

30 tháng 6

a: =>8x+2y=4 và 8x+3y=5

=>y=1 và 4x=2-1=1

=>x=1/4 và y=1

b: 3x-2y=11 và 4x-5y=3

=>12x-8y=44 và 12x-15y=9

=>7y=35 và 3x-2y=11

=>y=5 và 3x=11+2*y=11+2*5=21

=>x=7 và y=5

c: 5x-4y=3 và 2x+y=4

=>5x-4y=3 và 8x+4y=16

=>13x=19 và 2x+y=4

=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13

d: 3x-y=5 và 5x+2y=28

=>6x-2y=10 và 5x+2y=28

=>11x=38 và 3x-y=5

=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11

 

NV
28 tháng 1 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)

Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:

\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)

\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)

Thay xuống pt dưới:

\(6y+y=14\Rightarrow y=2\)

\(\Rightarrow x=4\)

22 tháng 2 2022

a, Ta có : \(\dfrac{4}{6}=-\dfrac{2}{-3}\ne\dfrac{5}{5}=1\)

vậy hpt vô nghiệm 

b, Ta có \(\dfrac{2}{4}=\dfrac{3}{6}=\dfrac{5}{10}\)-> hệ pt có vô số nghiệm 

20 tháng 9 2023

Xem lại giúp tớ dấu căn ở câu c và d nhé.  

loading...  

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

29 tháng 11 2023

a: \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}+1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\5\cdot\left(\dfrac{2}{3}y+2\right)-8y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\\dfrac{10}{3}y+10-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{14}{3}y=-7\\x=\dfrac{2}{3}y+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=7:\dfrac{14}{3}=7\cdot\dfrac{3}{14}=\dfrac{3}{2}\\x=\dfrac{2}{3}\cdot\dfrac{3}{2}+2=1+2=3\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=2-2y\\2\cdot3x-3y=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=2-2y\\2\left(2-2y\right)-3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-7y=18\\3x=2-2y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7y=-14\\3x=2-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\3x=2-2\cdot\left(-2\right)=6\end{matrix}\right.\)

=>x=2 và y=-2

2 tháng 2 2021

\(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}\left(x+2\right)\left(y+2\right)=\left(y-1\right)\left(x-\text{4}\right)\\\left(2x+3\right)\left(2y+1\right)=\left(y-1\right)\left(4x+1\right)\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}xy+2x+2y+4=xy-4y-x+4\\4xy+2x+6y+3=4xy-4x+y-1\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}3x+6y=0\\6x+5y=-4\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=\dfrac{4}{7}\end{matrix}\right.\)(TM)

2 tháng 2 2021

\(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5x-5y-6x-9y=12\\3x+6y-4x-8y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-x-14y=12\\-x-2y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-\dfrac{26}{3}\\y=-\dfrac{7}{12}\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (\(-\dfrac{26}{3};-\dfrac{7}{12}\))