Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://olm.vn/hoi-dap
Mình chưa biết viết dấu GTTD nên mình thay bằng [] nha
Với lại mình làm bải k viết các bước tính ra đâu chỉ viết kết quả thui nha bạn
B1:a/[9+x]=2x
th1:9+x=2x th2:9+x=-2x
x=9 x=-3
b/[5x-3x]=2
th1:5x-3x=2 th2:5x-3x=-2
x=1 x=-1
c/[x+6]-9=2x
[x+6]=2x + 9
th1:x+6=2x+9 th2:x+6=-2x-9
x =2x+3 x =-2x-15
-3 =2x-x 15 =-2x-x
x=-2 -3x=15
x=-5
mk chỉ giúp được bạn thế này thui,mình ngại làm lắm
Tí làm típ cho

a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)

\(a)\left|x-1\right|=4 \Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy...
\(b)\left|x-1\right|+\left|x+3\right|=4\left(1\right)\)
*Khi \(x< -3\), phương trình (1) trở thành:
\(-\left(x-1\right)-\left(x+3\right)=4\\ \Leftrightarrow-x+1-x-3=4\\ \Leftrightarrow-2x-2=4\\ \Leftrightarrow-2x=6\\ \Leftrightarrow x=-3\left(KTM\right)\)
*Khi \(-3\le x< 1\), phương trình (1) trở thành:
\(-\left(x-1\right)+x+3=4\\ \Leftrightarrow-x+1+x+3=4\\ \Leftrightarrow0x+4=4\\ \Leftrightarrow0x=0\left(VSN\right)\)
*Khi \(x\ge1\), phương trình (1) trở thành:
\(x-1+x+3=4\\ \Leftrightarrow2x+2=4\\ \Leftrightarrow2x=2\\ \Leftrightarrow x=1\left(TM\right)\)
Vậy...

c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)
Vậy MinC = 2500 khi 50 =< x =< 56
a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1
Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)
Vậy MinA = 1 khi 2011 =< x =< 2012
b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011|
Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)
Mà \(\left|x-2011\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)
Vậy MinB = 2 khi x = 2011
Câu c để nghĩ

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(=>\dfrac{x+4}{2010}+1\))+(\(\dfrac{x+3}{2011}+1\))=\(\left(\dfrac{x+2}{2012}+1\right)\)+\(\left(\dfrac{x+1}{2013}+1\right)\)
=>\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
=>x+2014(\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\))=0
ta thấy \(\dfrac{1}{2010}>\dfrac{1}{2011}>\dfrac{1}{2012}>\dfrac{1}{2013}\)
=>\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}>0\)
để A=0
\(\Leftrightarrow x+2014=0\)
\(\Leftrightarrow\)x=-2014
a)\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)
\(\Rightarrow\left(x+2014\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)Mà \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)
\(\Rightarrow x+2014=0\)
\(\Rightarrow x=-2014\)

Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
a) \(\left|x-2011\right|=x-2012\left(ĐK:x-2012\ge0\Rightarrow x\ge2012\right)\\ \Rightarrow\left[{}\begin{matrix}x-2011=x-2012\\x-2011=-\left(x-2012\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-x=2011-2012\\x-2011=-x+2012\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0=-1\left(Vô\right)lí\\x+x=2011+2012\end{matrix}\right.\\ \Rightarrow2x=4023\\ \Rightarrow x=\dfrac{4023}{2}\left(KTMDK\right)\)
Vậy không có giá trị x thỏa mãn yc đề bài