K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(E=2x^2+4x+13\)

\(=2\left(x^2+2x+\dfrac{13}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{11}{2}\right)\)

\(=2\left(x+1\right)^2+11>=11>0\forall x\)

\(F=2x^2-3x+6\)

\(=2\left(x^2-\dfrac{3}{2}x+3\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{39}{16}\right)\)

\(=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{39}{8}>=\dfrac{39}{8}>0\forall x\)

11 tháng 8

E=2x2+4x+13

E=2(x2+2x+1)+11

E=2(x+1)2+11

2(x+1)2≥0,∀x

⇒2(x+1)2+11 lớn hơn 0 ∀x

⇒E luôn nhân giá trị dương

F=2x2-3x+6

 2F=4x2-6x+12

2F=(4x2-6x+\(\dfrac{9}{4}\))+\(\dfrac{15}{4}\)

2F=(2x+\(\dfrac{3}{2}\))2+\(\dfrac{15}{4}\)

F=\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\)

\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)≥0,∀x

\(\dfrac{\left(2x+\dfrac{3}{2}\right)^2}{2}\)+\(\dfrac{15}{8}\) lớn hơn 0 ∀x

⇒F luôn nhận giá trị dương

 

31 tháng 8 2021

a, \(E=4x^2+6x+5=4\left(x^2+\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+5\)

\(=4\left(x+\frac{3}{4}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

Vậy ta có đpcm 

b, \(F=2x^2-3x+7=2\left(x^2-\frac{2.3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+7\)

\(=2\left(x-\frac{3}{4}\right)^2+\frac{47}{8}\ge\frac{47}{8}>0\forall x\)

Vậy ta có đpcm 

c, \(K=5x^2-4x+1=5\left(x^2-\frac{2.2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+1\)

\(=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}>0\forall x\)

Vậy ta có đpcm 

d, \(Q=3x^2+2x+5=3\left(x^2+\frac{2}{3}x+\frac{1}{9}-\frac{1}{9}\right)+5\)

\(=3\left(x+\frac{1}{3}\right)^2+\frac{14}{3}\ge\frac{14}{3}>0\forall x\)

Vậy ta có đpcm 

31 tháng 8 2021

a, \(A=-x^2+2x-3=-\left(x^2-2x+1-1\right)-3=-\left(x-1\right)^2-2\le-2< 0\forall x\)

Vậy ta có đpcm 

b, \(C=-x^2+4x-7=-\left(x^2-4x+4-4\right)-7=-\left(x-2\right)^2-3\le-3< 0\forall x\)

Vậy ta có đpcm 

c, \(D=-2x^2-6x-5=-2\left(x^2+\frac{2.3}{2}x+\frac{9}{4}-\frac{9}{4}\right)-5\)

\(=-2\left(x+\frac{3}{2}\right)^2-\frac{1}{2}\le-\frac{1}{2}< 0\forall x\)

Vậy ta có đpcm 

d, \(E=-3x^2+4x-4=-3\left(x^2-\frac{4}{3}x+\frac{4}{9}-\frac{4}{9}\right)-4\)

\(=-3\left(x-\frac{2}{3}\right)^2-\frac{8}{3}\le-\frac{8}{3}< 0\forall x\)

Vậy ta có đpcm 

e, tự làm nhé 

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

21 tháng 6 2017

B =  x2 + 4x + 6
   = (x2 + 4x + 4) + 2
   = (x + 2)2 + 2 > 0

D =  x2 + x + 1
   = (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
   = (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0

F =  2x2 + 4x + 3
   = (2x2 + 4x + 2) + 1
   = (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0

H =  4x2 + 4x + 2
   = (4x2 + 4x + 1) + 1
   = (2x + 1)2 + 1 > 0

K =  4x2 + 3x + 2
   = (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
   = (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0

L =  2x2 + 3x + 4
   = (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
   = (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0

Vậy các biểu thức trên luôn dương với mọi x

21 tháng 6 2017

\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)

\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)

Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x

9 tháng 7 2018

\(A\left(x,y\right)=x^2-2xy+y^2+4x^2-4xy+3\)

\(A\left(x,y\right)=5x^2-6xy+y^2+3\)

\(A\left(x,y\right)=2x^2+3x^2-6xy+y^2+3\)

\(A\left(x,y\right)=2x^2+\left(3x-y\right)^2+3\)

Ta thấy: \(2x^2\ge0\forall x\)

             \(\left(3x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow2x^2+\left(3x-y\right)^2+3\ge0\forall x,y\)

KL: Vậy biểu thức A luôn nhận giá trị dương.

\(B\left(x\right)=3x^2-5x+6\)

\(B\left(x\right)=3x^2-5x+\frac{5}{6}+\frac{31}{6}\)

\(B\left(x\right)=3x^2-5x+\left(\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\)

\(B\left(x\right)=\left(3x-\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\)

Ta thấy: \(\left(3x-\frac{5}{6}\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\ge0\forall x\)

vậy biểu thức B luôn nhận giá trị dương.

20 tháng 8 2021

A=(x+2)^2 +3

B=(x-5)^2 +4

20 tháng 8 2021

C=4(x+1/2)^2 +4

D=(x-1/2)^2 +19/4

E=2(x-3/4)^2 +95/8

 

22 tháng 6 2018

Ai trả lời đúng và nhanh kết bạn fb mk tặng thẻ nạp đt 20k nha

22 tháng 6 2018

\(x^2-3x+5=x^2-2x\) x \(\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+5\)

                            \(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(>0\)với mọi \(x\)

\(4x^2+5x+12=\left(2x\right)^2+2\) x  \(2x\)x\(\frac{5}{4}+\frac{25}{16}-\frac{25}{16}+12\)

                                 \(=\left(2x+\frac{5}{4}\right)^2\)\(+\frac{167}{16}>0\)với mọi  \(x\)

\(3x^2-9x+14=\) \(3\)\(\left(x^2-3x+\frac{14}{3}\right)\)

                                \(=3\left(x^2-2xX\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+14\right)\)

                                 = 3 { \(\left(x-\frac{3}{2}\right)^2+\frac{47}{4}\)\(>0\)

x,  X là nhân nha

11 tháng 9 2020

Bài 1.

( 1 - 3x )( x + 2 )

= 1( x + 2 ) - 3x( x + 2 )

= x + 2 - 3x2 - 6x 

= -3x2 - 5x + 2

= -3( x2 + 5/3x + 25/36 ) + 49/12

= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

Vậy GTLN của biểu thức = 49/12 <=> x = -5/6

Bài 2.

A = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> A vô nghiệm ( > 0 mà :)) )

Bài 3.

M = x2 + 2x + 7

= ( x2 + 2x + 1 ) + 6

= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x

=> đpcm

Bài 4.

A = -x2 + 18x - 81

= -( x2 - 18x + 81 )

= -( x - 9 )2 ≤ 0 ∀ x 

=> đpcm 

Bài 5. ( sửa thành luôn không dương nhé ;-; )

F = -x2 - 4x - 5

= -( x2 + 4x + 4 ) - 1

= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x

=> đpcm 

11 tháng 9 2020

Bài 2 

Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0

Đa thức A vô nghiệm

Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)

Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)

Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)