Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.
\(a,\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\left(x\ne2;x\ne3\right)\\ \Leftrightarrow\dfrac{5}{\left(x-3\right)\left(x-2\right)}-\dfrac{x+3}{x-2}=0\\\Leftrightarrow\dfrac{5-\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}=0 \\ \Leftrightarrow5-x^2+9=0\\ \Leftrightarrow14-x^2=0\\ \Leftrightarrow x^2=14\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{14}\\x=-\sqrt{14}\end{matrix}\right.\)
\(b,\dfrac{x}{2x+2}-\dfrac{2x}{x^2-2x-3}=\dfrac{x}{6-2x}\left(x\ne-1;x\ne3\right)\\ \Leftrightarrow\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}=\dfrac{x}{2\left(3-x\right)}\\ \Leftrightarrow\dfrac{x\left(x-3\right)-2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=\dfrac{-x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}\\ \Leftrightarrow x^2-3x-4x=-x^2-x\\ \Leftrightarrow2x^2-6x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(c,\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\left(x\ne1\right)\\ \Leftrightarrow\dfrac{x^2+x+1-3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\\ \Leftrightarrow-2x^2+x+1=2x^2-2x\\ \Leftrightarrow4x^2-3x-1=0\\ \Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(d,\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}=\dfrac{5-x}{2x^2+10x}\left(x\ne5;x\ne-5\right)\\ \Leftrightarrow\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}=\dfrac{5-x}{2x\left(x+5\right)}\\ \Leftrightarrow\dfrac{x^2+25x-2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{\left(5-x\right)\left(x-5\right)}{2x\left(x+5\right)\left(x-5\right)}\\ \Leftrightarrow x^2+25x-2\left(x^2+10x+25\right)=-\left(x^2-10x+25\right)\\ \Leftrightarrow x^2+25x-2x^2-20x-50=-x^2+10x-25\\ \Leftrightarrow-5x=25\\ \Leftrightarrow x=-5\)
Tick nha
Thực hiện các phép đổi tương đương , ta đưa ( 1 ) về dạng :
\(\frac{x+4}{2x^2-5x+2}-\frac{x+4}{2x^2-7x+3}=0\)
\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{2x^2-5x+2}-\frac{1}{2x^2-7x+3}\right)=0\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(1-2x\right)}{\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)}=0\)
\(\Leftrightarrow\left(x+4\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-4\\x=\frac{1}{2}\end{array}\right.\)
Thữ vào mẫu thức : Với \(x=\frac{1}{2}\) thì \(2x^2-5x+2=0\)
Với \(x=-4\) thì \(\left(2x^2-5x+2\right)\left(2x^2-7x+3\right)\ne0\)
Vậy phương trình ( 1 ) là cho nghiệm duy nhất là \(x=-4\)
Thay xx=√0,7 vào biểu thức ta được :
5√0,7^3 − 2√0,7^2 + 2,5√0,7 − 2,6 / √0,7^2 + 3√0,7 − 2,7
=3,5√0,7 − 1,4 + 2,5√0,7 − 2,6 / 0,7 + 3√0,7 −2,7
=6√0,7−4 / −2+3√0,7
=2
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)
\(\Leftrightarrow10x^2+13x+20=0\)
\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)
Do đó: Phương trình vô nghiệm
b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)
=>8x=2
hay x=1/4
c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)
\(\Leftrightarrow x^2-5x-5=0\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)
bài dễ thế mà ko làm được à?
Rút gọn hộ