
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+.....+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.\left(201+1\right)}{2}-1}{2}\)
\(=10150\)

Ta co :
E=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{201}{2}\)
=\(\frac{2+3+4+5+...+201}{2}\)
=\(\frac{\left[\left(201+2\right)\left(201-2\right):1+1\right]:2}{2}\)
=\(\frac{40398:2}{2}\)
=\(\frac{20199}{2}\)
Đúng thì k không thì giúp tớ với

\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.202}{2}-1}{2}=10150\)
Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{200}}\)
=>\(3A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{199}}\)
=>\(3A-A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{199}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{200}}\)
=>\(2A=1-\dfrac{1}{3^{200}}\)
=>\(A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{200}}\)
=>\(A< E\)
Đặt \(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{200}}\)
\(3S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{199}}\)
\(3S-S=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{199}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{200}}\right)\)
\(2S=1-\dfrac{1}{3^{200}}\) < 1
\(\dfrac{2S}{2}< \dfrac{1}{2}\)
\(S< \dfrac{1}{2}\)