Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 9. Cho hình thang vuông ABCD, có = = 90o và AD = 2BC. Kẻ AH vuông góc với BD (H thuộc BD). Gọi I là trung điểm của HD.
Chứng minh rằng: CI ^ AI
Giải:
Gọi G là trung điểm AD. Suy ra GI là đường trung bình traong tam giác ADH => GI // AH.
Vẽ IJ // AD => Tứ giác AGIJ là hình bình hành => AG = IJ = BC => Tứ giác BCIJ cũng là hình bình hành.
Vì IJ // AD => IJ vuông góc với AB. Trong tam giác ABI thì J là giao điểm hai đường cao IJ và AH nên J là trực tâm => BJ vuông góc AI.
Mà BJ // CI (Do tứ giác BCIJ là hình bình hành) nên CI vuông góc với AI.

a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*

b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)
mà \(AB=BC=\dfrac{AD}{2}\)
nên AE=ED=AB=BC
Xét tứ giác AECB có
AE//CB
AE=CB
Do đó: AECB là hình bình hành
mà \(\widehat{EAB}=90^0\)
nên AECB là hình chữ nhật
mà AE=AB
nên AECB là hình vuông
Xét ΔHAD có
N là trung điểm của AH
M là trung điểm của HD
Do đó: MN là đường trung bình của ΔHAD
Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)
mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC
nên MN//BC và MN=BC
Xét tứ giác BCMN có
MN//BC
MN=BC
Do đó: BCMN là hình bình hành
Xét `ΔHAD` có:
`K` là trung điểm `HA`
`I` là trung điểm `HD`
`=> KI` là đường trung bình của ` ΔHAD`
`=> KI` // `AD` và `KI` \(=\dfrac{1}{2}AD\)
Lại có: `BC // AD => BC // KI`
Mà `BC =` \(\dfrac{1}{2}AD\) `=> BC = KI`
Xét tứ giác `BCIK` có: `BC // KI ` và `BC = KI`
`=>` Tứ giác `BCIK` là hình bình hành