K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔABC có

AB chung

BD=AC

AD=BC

Do đó: ΔBAD=ΔABC

=>\(\widehat{ABD}=\widehat{BAC}\)

=>\(\widehat{TAB}=\widehat{TBA}\)

=>ΔTAB cân tại T

=>TA=TB

b: Ta có: TA+TC=AC

TB+TD=BD

mà TA=TB và AC=BD

nên TC=TD

26 tháng 7

nối t với m sao cho tm vuông góc ab 

xét tam giác AMT và tam giác BMT có

amt=bmt=90 độ

mt chung 

am=mb

suy ra hai tam giác bằng nhau 

suy ra ta=tb

CMTT ta có tam giác TDN và TCN 

suy ra TD=TC

 

a: Xét ΔACD và ΔBDC có

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: OC+OA=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

a: Xét ΔEAB và ΔEMD có

góc EAB=góc EMD

góc AEB=góc MED

=>ΔEAB đồng dạng vơi ΔEMD

=>EM/EA=AB/MD=AB/MC

Xet ΔFAB và ΔFCM có

góc FAB=góc FCM

góc AFB=góc CFM

Do đó: ΔFAB đồng dạng với ΔFCM

=>FB/FM=AB/CM

=>FM/FB=CM/AB=DM/AB=ME/EA

=>EF//AB

b: Xet ΔBMC có FN//MC

nên FN/MC=BN/BC

=>FN/MD=AH/AD

Xét ΔADM có HE//DM

nên HE/DM=AH/AD

Xét ΔBDC có EN//DC

nên EN/DC=BN/BC=AH/AD

=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD

=>(EF+FN)/2=HE=FN

=>EF+FN=2FN

=>FN=EF=HE

3 tháng 9 2017

A B C D H K M N E F 4cm

xét tg ADH và tg BCK có:  ^AHD=^BKC=90 ; AD=BC( vì tg ABCD là hthang cân); ^ADH =^BCK (vì tg ABCD là hthang cân)

=> tg ADH=tg BCK (ch-gn) => DH=CK

b) xét hthang ABCD có: M là t/đ của AD(gt) và N là t/đ của BC(gt)=> MN là đg trung bình của hthang ABCD => MN//AB//CD

và MN= 1/2.(AB+CD)=> MN= 1/2.(4+10)==7 (cm)

xét tg ABC có: N là t/đ của Bc(gt) ; NF//AB( vì F thuộc MN ; MN//AB) => F là t/đ của AC=> NF la đg trung bình của tg ABC

=> NF=1/2.AB=1/2.4=2(cm)

c/m tương tự ta đc: ME=2cm

ta có: MN=ME+EF+FN ( vì E,F thuộc MN)

    => 7 =2+EF+2 => EF=3 (cm) 

Vậy độ dài cạnh EF là 3cm