
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}=-4\)
Vì \(\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}=-4\)
\(\Rightarrow\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}+4=0\)
\(\Rightarrow\left(\dfrac{x+23}{2021}+1\right)+\left(\dfrac{x+22}{2022}+1\right)+\left(\dfrac{x+21}{2023}+1\right)+\left(\dfrac{x+20}{2024}+1\right)=0\)
\(\Rightarrow\dfrac{x+2044}{2021}+\dfrac{x+2044}{2022}+\dfrac{x+2044}{2023}+\dfrac{x+2044}{2024}=0\)
\(\Rightarrow\left(x+2044\right)\left(\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{2024}\right)=0\)
\(\Rightarrow x+2044=0\left(\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{2024}\ne0\right)\)
\(\Rightarrow x=-2024\)

(y - 1)2024 + |\(x+y-1\)| = 0
Vì (y - 1)2024 ≥ 0 ∀ y; |\(x+y-1\)| ≥ 0 ∀ \(x;y\)
(y - 1)2024 + |\(x+y-1\)| = 0 khi và chỉ khi
y - 1 = 0 và \(x+y-1\) = 0
y - 1 = 0 Suy ra y = 1. thay y = 1 vào biểu thức \(x+y-1=0\) ta có:
\(x+1-1=0\) ⇒ \(x=0-1+1\) \(x=0\)
Vậy \(x=0;y=1\) thay vào biểu thức A= \(x^{2024}\) + y2024 ta được:
A = 02024 + 12024 = 0 + 1 = 1

(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0
⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0
*) (x + 20)⁴ = 0
x + 20 = 0
x = 0 - 20
x = -20
*) (2y - 1)²⁰²⁴ = 0
2y - 1 = 0
2y = 1
y = 1/2
M = 5.(-20)².1/2 - 4.(-2).(1/2)²
= 1000 + 2
= 1002

Lời giải:
$\frac{a+2013}{a-2013}=\frac{b+2024}{b-2024}$
$\Rightarrow \frac{a-2013+4026}{a-2013}=\frac{b-2024+4048}{b-2024}$
$\Rightarrow 1+\frac{4026}{a-2013}=1+\frac{4048}{b-2024}$
$\Rightarrow \frac{4026}{a-2013}=\frac{4048}{b-2024}$
$\Rightarrow 4026(b-2024)=4048(a-2013)$
$\Rightarrow 4026b-4048a=4026.2024-4048.2013=2.2013.2024-2.2024.2013=0$
$\Rightarrow 4026b=4048a$
$\Rightarrow 2013b=2024a$
$\Rightarrow \frac{a}{2013}=\frac{b}{2024}$
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)


\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(4x^{30}-1^{30}=4x^{20}-1^{20}\)
\(4x^{30}-4x^{20}=-1+1\)
\(4x^{20}\left(x^{10}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x^{20}=0\\x^{10}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x^{20}=0\\x^{10}=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
hok tốt!!
Ta có \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
<=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
<=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
<=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=1\\4x-1=1;4x-1=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\4x=2;4x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2;x=0\end{cases}}\)
Vậy \(x\in\left\{0;2;\frac{1}{4}\right\}\)
T k chắc bài t nhưng t chắc bạn ღTĭểυ Tɦưღ lm sai ròi )) lũy thừa thì lm j cs cái ct đó
Hc tốt

ta có : \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)(=)\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)(=)\(\left(4x-1\right)^{20}\left[\left(4x-1\right)^{10}-1\right]=0\)(=)\(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left[\left(4x-1\right)^{10}-1\right]=0\end{cases}}\)(=)\(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)(=)\(\orbr{\begin{cases}4x=1\\\begin{cases}4x-1=1\\4x-1=-1\end{cases}\end{cases}}\)(=)\(\orbr{\begin{cases}x=\frac{1}{3}\\\begin{cases}4x=2\\4x=0\end{cases}\end{cases}}\)\(\orbr{\begin{cases}x=\frac{1}{4}\\\begin{cases}x=\frac{1}{2}\\x=0\end{cases}\end{cases}}\)
\(\dfrac{1}{4}x+\dfrac{1}{5}x=2024\)
\(\left(\dfrac{1}{4}+\dfrac{1}{5}\right)x=2024\)
\(\dfrac{9}{20}x=2024\)
\(x=2024\div\dfrac{9}{20}\)
\(x=\dfrac{40480}{9}\)