Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}\left(x-1\right)-x-\frac{3}{4}=1\)
<=> \(\frac{2}{3}x-\frac{2}{3}-x-\frac{3}{4}=1\)
<=> \(-\frac{1}{3}x-\frac{17}{12}=1\)
<=> \(-\frac{1}{3}x=\frac{29}{12}\)
<=> \(x=-\frac{29}{4}\)
\(\frac{5}{6}\left(x+2\right)-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(\frac{5}{6}x+\frac{5}{3}-x-\frac{1}{2}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x+\frac{7}{6}=\frac{1}{3}\)
<=> \(-\frac{1}{6}x=-\frac{5}{6}\)
<=> \(x=5\)
học tốt
a) \(\dfrac{1}{4}+\dfrac{3}{4}:x=-2\)
\(\dfrac{3}{4}:x=-2-\dfrac{1}{4}=\dfrac{-8}{4}-\dfrac{1}{4}\)
\(\dfrac{3}{4}:x=\dfrac{-9}{4}\)
\(x=\dfrac{3}{4}:\dfrac{-9}{4}=\dfrac{3}{4}.\dfrac{-4}{9}\)
\(x=\dfrac{-1}{3}\)
b) \(\dfrac{3}{4}+2.\left(2x-\dfrac{2}{3}\right)=-2\)
\(2.\left(2x-\dfrac{2}{3}\right)=-2-\dfrac{3}{4}=\dfrac{-8}{4}-\dfrac{3}{4}\)
\(2.\left(2x-\dfrac{2}{3}\right)=\dfrac{-11}{4}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{4}:2=\dfrac{-11}{4}.\dfrac{1}{2}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{8}\)
\(2x=\dfrac{-11}{8}+\dfrac{2}{3}=\dfrac{-33}{24}+\dfrac{16}{24}\)
\(2x=\dfrac{-17}{24}\)
\(x=\dfrac{-17}{24}:2=\dfrac{-17}{24}.\dfrac{1}{2}\)
\(x=\dfrac{-17}{48}\)
c) \(\left(\dfrac{1}{2}+5x\right).\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}+5x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{2}\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)
a, 1/4 + 3/4 : x = -2
3/4 : x = -2 - 1/4
3/4 : x = -9/4
x = 3/4 : -9/4
x = -1/3
Để giải phương trình này, ta có thể làm như sau:
x - 3/x - 2 + x - 2/x - 4 = -1
Nhân cả hai vế của phương trình với (x - 2)(x - 4) để loại bỏ các mẫu số:
(x - 3)(x - 4) + (x - 2)(x - 4) + (x - 2)(x - 2) = -1(x - 2)(x - 4)
Mở ngoặc và rút gọn các thành phần tương tự:
x^2 - 7x + 12 + x^2 - 6x + 8 + x^2 - 4x + 4 = -x^2 + 6x - 8
3x^2 - 17x + 16 = 0
Giải phương trình bậc hai này bằng công thức:
x = [17 ± sqrt(17^2 - 4316)] / (2*3)
x = [17 ± sqrt(193)] / 6
Vậy phương trình có hai nghiệm là:
x ≈ 3.11 hoặc x ≈ 1.22
3ˣ⁺¹ + 3ˣ⁺³ = 810
3ˣ⁺¹.(1 + 3²) = 810
3ˣ⁺¹.10 = 810
3ˣ⁺¹ = 810 : 10
3ˣ⁺¹ = 81
3ˣ⁺¹ = 3⁴
x + 1 = 4
x = 4 - 1
x = 3
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne4\end{matrix}\right.\)
\(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\)
\(\Leftrightarrow\left(x-3\right).\left(x-4\right)+\left(x-2\right)^2=-\left(x-2\right).\left(x-4\right)\)
\(\Leftrightarrow3x^2-17x+24=0\)
\(\Leftrightarrow3x^2-9x-8x+24=0\)
\(\Leftrightarrow\left(3x-8\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=3\end{matrix}\right.\left(\text{thỏa}\right)\)
\(\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1\left(x\ne\left\{2;4\right\}\right)\\ =>\dfrac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\\ =>x^2-3x-4x+12+x^2-4x+4=-\left(x-2\right)\left(x-4\right)\\ =>2x^2-11x+16=-x^2+6x-8\\ =>3x^2-17x+24=0\\ =>\left(x-3\right)\left(3x-8\right)=0\\ =>\left[{}\begin{matrix}x=3\\x=\dfrac{8}{3}\end{matrix}\right.\left(TMDK\right)\)
a,
\(\left(5x+3\right)^2=\dfrac{25}{9}\\ \Rightarrow\left[{}\begin{matrix}5x+3=\dfrac{5}{3}\\5x+3=-\dfrac{5}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{15}\\x=-\dfrac{7}{6}\end{matrix}\right.\)
b,
\(\left(-\dfrac{1}{2}x+3\right)^3=-\dfrac{1}{125}\\ \Rightarrow-\dfrac{1}{2}x+3=-\dfrac{1}{5}\\ \Rightarrow x=\dfrac{32}{5}\)
c,
\(3^{-2}.2^x+2^x.3=\dfrac{7}{36}\)
\(=>2^x\left(\dfrac{1}{9}+3\right)=\dfrac{7}{36}\)
\(=>2^x.\dfrac{28}{9}=\dfrac{7}{36}\)
\(=>2^x=\dfrac{1}{16}\)
\(=>2^x=2^{-4}\)
\(=>x=-4\)
Ta có : \(\frac{x+1}{2013}+\frac{x+2}{2012}+\frac{x+3}{2011}=-3.\)
\(\Leftrightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=-3+3\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\right)=0\)
Mà \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\ne0\) nên \(x+2014=0\Leftrightarrow x=-2014\)
Vây \(x=-2014\)
\(3^x+3^{x+1}+3^{x+2}=2080-3^{x+3}\\ 3^x+3^{x+1}+3^{x+2}+3^{x+3}=2080\\ 3^x+3^x.3+3^x.3^2+3^x.3^3=2080\\ 3^x\left(1+3+9+27\right)=2080\\ 3^x.40=2080\\ 3^x=2080:40\\ 3^x=52\)
Không có cơ số 3 nào có số mũ mà bằng 52
Vậy \(x\in\left\{\varnothing\right\}\)