Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải phương trình:\(\frac{x^2+x}{x^2+3}+\frac{3x^2-x+15}{x^2+4}+\frac{x^2+x+2}{x^2+5}+x^3-3x^2+1=0\)
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
tự kết luận nhé
a,\(\left(x^2-2x+1\right)-2\left(x-1\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)+1=0\)
\(\Leftrightarrow\left(x-1-1\right)^2=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(\left(x-3\right)\left(x+4\right)=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4-x-5\right)=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
\(x+4-x-5\ne0\Leftrightarrow0x\ne1\)
a) \(\left(x^2-2x+1\right)-2\left(x-1\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)+1=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=2\)
b) \(\left(x-3\right)\left(x+4\right)=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(\hept{\begin{cases}\frac{x+y}{5}=\frac{x-y}{3}\\\frac{x}{4}=\frac{y}{2}+1\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(x+y\right)=5\left(x-y\right)\\x=4\left(\frac{y}{2}+1\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}3\left(x+y\right)=5\left(x-y\right)\\x=2y+4\end{cases}\Leftrightarrow\hept{\begin{cases}3x+3y=5x-5y\\x=2y+4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}-2x+8y=0\\x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}-2x+8y=0\\4x-8y=16\end{cases}\Leftrightarrow}\hept{\begin{cases}x=8\\y=2\end{cases}}}\)
Vậy (x;y) = (8;2)
b) \(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}\Leftrightarrow\hept{\begin{cases}5\left(x+y\right)=4x-3\\14\left(x+3y\right)=15-9y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5x+5y=4x-3\\14x+42y=15-9y\end{cases}\Leftrightarrow\hept{\begin{cases}x+5y=-3\\14x+51y=15\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=12\\y=-3\end{cases}}\)
Vậy (x;y)=(12;-3)
\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)=15\\ \Leftrightarrow\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]=15\\ \Leftrightarrow\left(x^2-7x+10\right)\left(x^2-7x+12\right)=15\\ \Leftrightarrow\left[\left(x^2-7x+11\right)-1\right]\left[\left(x^2-7x+11\right)+1\right]=15\\ \Leftrightarrow\left(x^2-7x+11\right)^2-1=15\\ \Leftrightarrow\left(x^2-7x+11\right)^2=16=4^2\\ \Leftrightarrow\left(x^2-7x+11\right)^2-4^2=0\\ \Leftrightarrow\left(x^2-7x+11-4\right)\left(x^2-7x+11+4\right)=0\\ \Leftrightarrow\left(x^2-7x+7\right)\left(x^2-7x+15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-7x+7=0\\x^2-7x+15=0\end{matrix}\right.\)
Đến đây bn giải delta ra từng trường hợp nhé
\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)=15\)
=>\(\left(x^2-7x+10\right)\left(x^2-7x+12\right)-15=0\)
=>\(\left(x^2-7x\right)^2+22\left(x^2-7x\right)+120-15=0\)
=>\(\left(x^2-7x\right)^2+22\left(x^2-7x\right)+105=0\)
=>\(\left(x^2-7x+7\right)\left(x^2-7x+15\right)=0\)
mà \(x^2-7x+15=\left(x-\dfrac{7}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)
nên \(x^2-7x+7=0\)
=>\(x=\dfrac{7\pm\sqrt{21}}{2}\)