K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7

100

13 tháng 7

bạn phải làm đầy đủ

6 tháng 12 2021

Sao bạn bỏ một khoảng trống giữa các số 5 2 với 2 3v?

6 tháng 12 2021

hả

10 tháng 12 2019

(52 + 53).x + (52 - 53).x - 50 = 102

(52 + 53).x + (52 - 53).x - 50 = 100

150x - 100x - 50 = 100

(150x - 100x) - 50 = 100

50x - 50 = 100

50x = 100 + 50

50x = 150

x = 150 : 50

x = 3

4 tháng 8 2015

dài thế này làm đến tết chắc vẫn chưa xong

4 tháng 8 2015

Bạn đăng từ bài thôi , nhiều quá sao làm nổi

23 tháng 10 2023

a: \(20-\left[30-\left(5-1\right)^2\right]\)

\(=20-\left[30-4^2\right]\)

\(=20-14=6\)

b: \(71+\dfrac{50}{5+3\left(57-6\cdot7\right)}\)

\(=71+\dfrac{50}{5+3\cdot\left(57-42\right)}\)

\(=71+\dfrac{50}{5+3\cdot15}=71+\dfrac{50}{50}=72\)

c: \(4\cdot\left\{270:\left[50-\left(2^5+45:5\right)\right]\right\}\)

\(=4\cdot\left\{270:\left[50-32-9\right]\right\}\)

\(=4\cdot\left\{\dfrac{270}{50-41}\right\}=4\cdot\dfrac{270}{9}=4\cdot30=120\)

d: \(411-\left[\dfrac{\left(107+3\right)}{5}-2^2\right]\)

\(=411-\left[\dfrac{110}{5}-4\right]\)

=410-22+4

=410-18

=392

e: \(450-5\left[3^2\left(7^5:7^3-41\right)-12\right]+18\)

\(=450-5\left[9\cdot\left(7^2-41\right)-12\right]+18\)

\(=450-5\cdot\left[9\cdot8-12\right]+18\)

=468-5*60

=468-300

=168

f:

\(102-150:\left[18-2\cdot\left(10-8\right)^2\right]+1018^0\)

\(=102-150:\left[18-2\cdot4\right]+1\)

\(=103-\dfrac{150}{18-8}=103-15=88\)

18 tháng 12 2019

\(a.=3.25+15.4.20:2\)

\(=75+600\)

\(=675\)

18 tháng 12 2019

\(c.=50-\left[\left(50-8.5\right):2+3\right]\)

\(=50-\left[\left(50-40\right):2+3\right]\)

\(=50-\left[10:2+3\right]\)

\(=50-\left[5+3\right]\)

\(=50-8\)

\(=42\)

12 tháng 10 2023

\(2A-A=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+...+2^{20}\right)\)

\(A=2^{21}-2\)

B tương tự câu A

\(5C-C=\left(5^2+5^3+...+5^{51}\right)-\left(5+5^2+...+5^{50}\right)\)

\(C=\dfrac{5^{51}-5}{4}\)

\(3D-D=3+3^2+...+3^{101}-\left(1+3+...+3^{100}\right)\)

\(D=\dfrac{3^{101}-1}{2}\)

12 tháng 10 2023

\(A=2^1+2^2+2^3+...+2^{20}\)

\(2\cdot A=2^2+2^3+2^4+...+2^{21}\)

\(A=2^{21}-2\)

 

\(B=2^1+2^3+2^5+...+2^{99}\)

\(4\cdot B=2^3+2^5+2^7+...+2^{101}\)

\(B=\)\(\left(2^{101}-2\right):3\)

 

\(C=5^1+5^2+5^3+...+5^{50}\)

\(5\cdot C=5^2+5^3+5^4+...+5^{51}\)

\(C=(5^{51}-5):4\)

 

\(D=3^0+3^1+3^2+...+3^{100}\)

\(3\cdot D=3^1+3^2+3^3+...+3^{101}\)

\(D=(3^{101}-1):2\)