K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2024

Ta có:

\(n^4-6n^3+27n^2-54n+32\\ =\left(n^4-2n^3\right)+\left(-4n^3+8n^2\right)+\left(19n^2-38n\right)+\left(-16n+32\right)\\ =n^3\left(n-2\right)-4n^2\left(n-2\right)+19n\left(n-2\right)-16\left(n-2\right)\\ =\left(n-2\right)\left(n^3-4n^2+19n-16\right)\\ =\left(n-2\right)\left[\left(n^3-n^2\right)+\left(-3n^2+3n\right)+\left(16n-16\right)\right]\\ =\left(n-2\right)\left[n^2\left(n-1\right)-3n\left(n-1\right)+16\left(n-1\right)\right]\\ =\left(n-1\right)\left(n-2\right)\left(n^2-3n+16\right)\)

Vì: `(n-1)(n-2)` là tích của 2 số liên tiếp 

=> `(n-1)(n-2)` chia hết cho 2

=> `n^4-6n^3+27n^2-54n+32` chia hết cho 2

14 tháng 7 2024

tách kiểu j v ạ?:>

15 tháng 10 2016

chiu

tk nhe

xin do

bye

Bài 1:

\(M=x^4-x^3-x^3+x^2+2x^2-2x+2\)

\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)

\(=3x^2-3x+6+2\)

\(=3x^2-3x+8\)

\(=3\left(x^2-x\right)+8=3\cdot3+8=17\)

8 tháng 10 2017

B1: Giải:

\(n^4+6n^3+11n^2+6n\)

= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)

= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)

= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)

= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)

= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)

= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)

= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)

Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)

Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.

Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)

Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)

16 tháng 6 2015

\(=n^4+2n^3+4n^3+8n^2+15n^2+30n-12n-24+24=\left(n+2\right)\left(n^3+4n^2+15n-12\right)+24\)

\(=\left(n+2\right)\left(n^3-3n^2+7n^2-21n+36n-12\right)+24=\left(n+2\right)\left(n-3\right)\left(n^2+7n+12\right)+24\)

\(=\left(n+2\right)\left(n-3\right)\left(n^2+3n+4n+12\right)+24=\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+1-4\right)+24\)

\(=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)-4\left(n+2\right)\left(n+3\right)\left(n+4\right)+24\)

(n+1)(n+2)(n+3)(n+4) là tích 4 số tự nhiên liên tiếp => chia hết cho 1.2.3.4=24

(n+2)(n+3)(n+4) là tích 3 số tự nhiên liên tiếp => chia hết cho 1.2.3=6 => 4(n+2)(n+3)(n+4) chia hết cho 4.6=24

biểu thức vừa thu gọn là tổng hiệu của các số chia hết cho 24 => chia hết cho 24

16 tháng 9 2016

undefined

16 tháng 9 2016

khó nhìn thiệt nhưng chắc đúng

18 tháng 10 2015

vào câu hỏi tương tự nha

Ta có : \(n^4+2n^3-n^2-2n\)

\(=n^3\left(n+2\right)-n\left(n+2\right)\)

\(=\left(n+2\right)\left(n^3-n\right)\)

\(=n\left(n^2-1\right)\left(n+2\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Do : \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 4 số nguyên liên tiếp nên chia hết cho 24 .

Vậy \(n^4+2n^3-n^2-2n\) chia hết cho 24 ( đpcm )

1 tháng 8 2018

Ta có:

\(n^4+2n^3-n^2-2n\)

\(=n^3\left(n+2\right)-n\left(n+2\right)\)

\(=\left(n+2\right)\left(n^3-n\right)\)

\(=\left(n+2\right)n\left(n^2-1\right)\)

\(=\left(n+2\right)n\left(n+1\right)\left(n-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)

\(\Rightarrow n^4+2n^3-n^2-2n⋮24\)

10 tháng 8 2015

n4+6n3+11n2+6n

=(n4+5n3+6n2)+(n3+5n2+6n)

=(n2+n)(n2+5n+6)

=n(n+1)(n2+3n+2n+6)

=n(n+1)(n+2)(n+3)

Do n ; n+1;n+2;n+3 là 4 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2 , 1 số chia hết cho 3,1 số chia hết cho 4

=>n(n+1)(n+2)(n+3) chia hết cho 2.3.4=24(đpcm)