Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{3}{1}\).(\(\dfrac{3}{2.5}\)+\(\dfrac{3}{5.8}\)+...+\(\dfrac{3}{98.101}\))
A=3.(\(\dfrac{1}{2}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\)-\(\dfrac{1}{101}\))
A=3.(\(\dfrac{1}{2}\)-\(\dfrac{1}{101}\))
A=3.\(\dfrac{98}{202}\)
A=\(\dfrac{294}{202}\)=\(\dfrac{147}{101}\)
\(2^4\cdot38-x\cdot16=24\)
\(16\cdot38-x\cdot16=24\)
\(16\cdot\left(28-x\right)=24\)
\(28-x=\frac{24}{16}\)
\(28-x=\frac{3}{2}\)
\(x=28-\frac{3}{2}\)
\(x=\frac{53}{2}\)
Sửa nha bạn :
\(2^4\cdot38-x\cdot16=24\)
\(16\cdot38-x\cdot16=24\)
\(16\left(38-x\right)=24\)
\(38-x=\frac{3}{2}\)
\(x=38-\frac{3}{2}\)
\(x=\frac{73}{2}\)
\(B=1+7+7^2+7^3+...+7^{150}\)
\(7B=7.\left(1+7+7^2+7^3+...+7^{150}\right)\)
\(7B=7+7^2+7^3+7^4+...+7^{151}\)
\(7B-B=\left(7+7^2+7^3+7^4+...+7^{151}\right)-\left(1+7+7^2+7^3+...+7^{150}\right)\)
\(6B=\left(7^{151}-1\right)\)
\(B=\left(7^{151}-1\right):6\)
B = 1 + 7 + 72 + ...+ 7150
7.B = 7 + 72+.....+ 7150 + 7151
7B - B = 7151 - 1
6B = 7151 - 1
B = \(\dfrac{7^{151}-1}{6}\)
/x-4/-16=-9
/x-4/=-9+16
/x+4/=7
\(\Rightarrow\)x+4=7 hoặc x+4=-7
x=7-4 x=-7-4
x=3 x=-3
ủ hộ **** cho mình nhaLê Vũ Việt Hoàng
Chiều rộng tấm bìa:
\(\dfrac{3}{32}:\dfrac{3}{8}=\dfrac{1}{4}\left(m\right)\)
Chu vi tấm bìa:
\(\left(\dfrac{3}{8}+\dfrac{1}{4}\right)\times2=\dfrac{5}{4}\left(m\right)\)
Chiều rộng hình chữ nhật là :
3/32 : 3/8 = 1/4 (m)
Chu vi hình chữ nhật là :
(1/4 + 3/8) x 2 = 5/4 (m)
Đáp số : 5/4 m
Lời giải:
$a+b+c=(a+b+b+c+a+c):2=(-21+49+10):2=19$
$a=(a+b+c)-(b+c)=19-49=-30$
$b=(a+b+c)-(a+c)=19-10=9$
$c=(a+b+c)-(a+b)=19-(-21)=40$
a) Ta có: yot=xot-xoy=130-50=80
b)Vì xot và xot' đối đỉnh nên xot' =130
c)Là góc vuông vì om phân giác yot nên moy=tom=80:2=40
Mà xom=yom+moy=40+50=90 nên xom là góc vuông
a.Vì 2 tia Oz, Oy cùng nằm trên nửa mặt phẳng bờ chứa tia Ox và góc xOy<góc xOz nên tia Oy nằm giữa hai tia Ox, Oz ta có:
xOy+yOz=xOz
50+yOz=130
yOz=130-50
\(\Rightarrow\) yOz=80
b.Vì Ot là tia đối của tia Oy nên hai góc xOy và xOt là hai góc kề bù ta có:
xOy+xOt=180
50+xOt=180
xOt=180-50
Vậy: xOt=130
c.Vì Om là tia phân giác của yOt nên:
yOm=\(\frac{yOt}{2}\)=\(\frac{180}{2}=90\)
\(\Rightarrow\) xOm= yOm-xOy=90-50=40
Vậy xOm là góc nhọn
Có
\(6x+1⋮2x-1\)
\(3\left(2x-1\right)⋮2x-1\)
\(\Rightarrow\left(\left(6x+1\right)-3\left(2x-1\right)\right)⋮2x-1\)
\(\Rightarrow\left(6x+1-6x+3\right)⋮2x-1\)
\(\Rightarrow4⋮2x-1\)
\(\Rightarrow\left(2x-1\right)\inƯ_{\left(4\right)}\)
mà \(2x-1\)lẻ
\(\Rightarrow2x-1\in\pm1\)
Ta có bảng giá trị
2x-1 | 1 | -1 |
x | 1 | 0 |
Thử lại : Ta thấy đều thỏa mãn
20n+9 và 30n+13 nguyên tố cùng nhau khi ƯCLN(20n+9;30n+12)=\(\pm\)1
Gọi ƯCLN(20n+9;30n+12) là d
\(\Rightarrow\)20n+9 \(⋮\)d
30n+13 \(⋮\)d
\(\Rightarrow\)3.(20n+9)=60n+27\(⋮\)d
2.(30n+13)=60n+26 \(⋮\)d
\(\Rightarrow\)(60n+27)-(60n+26)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d\(\in\)ƯCLN(1)={1;-1}
Vậy 20n+9 và 30n+13 nguyên tố cùng nhau.
tóm lại cách làm bài này là:
gọi ưcln của những số cần chứng minh là d
sau đó tìm và nhân sao cho số n của 2 số bằng nhau.
VD: như bài trên mk lấy là số 60
sau đó trừ đi lấy kết quả ( bạn yên tâm tất cả kết quả đều là 1 hết, nếu không phải thì đề bài sai)
rồi làm như mình làm ở trên.
bài nào khó thì gửi cho mk nha. mk sẽ giúp bạn nhiệt tình. hi hi....
Bài 3:
\(A=75\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\)
Đặt: \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\\ 4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)-\left(4^{2004}+4^{2003}+...+4^2+4+1\right)\\ 3B=4^{2005}-1\\ B=\dfrac{4^{2005}-1}{3}\)
\(=>A=75\cdot\dfrac{4^{2005}-1}{3}+25\\ =25\left(4^{2005}-1\right)+25\\ =25\cdot\left(4^{2005}-1+1\right)\\ =25\cdot4^{2005}\\ =25\cdot4\cdot4^{2004}\\ =100\cdot4^{2004}\)
=> A chia hết cho 100
Bài 1:
a: \(\dfrac{5\cdot3^{11}+4\cdot3^{17}}{3^9\cdot5^2-3^9\cdot2^3}=\dfrac{3^{11}\cdot\left(5+4\cdot3^6\right)}{3^9\left(5^2-2^3\right)}\)
\(=3^2\cdot\dfrac{5+4\cdot729}{25-8}=3^2\cdot\dfrac{2921}{17}=\dfrac{26289}{17}\)
b: \(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{47\cdot50}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{47\cdot50}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{47}-\dfrac{1}{50}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=\dfrac{1}{3}\cdot\dfrac{24}{50}=\dfrac{24}{150}=\dfrac{8}{50}=\dfrac{4}{25}\)
c: \(1+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{9900}\)
\(=\dfrac{2}{2}+\dfrac{2}{6}+...+\dfrac{2}{9900}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{9900}\right)\)
\(=2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\left(1-\dfrac{1}{100}\right)=2\cdot\dfrac{99}{100}=\dfrac{99}{50}\)
d: \(\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{99^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{99}-1\right)\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-98}{99}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}\)
\(=\dfrac{1}{99}\cdot\dfrac{100}{2}=\dfrac{50}{99}\)