
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\Leftrightarrow A^2=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{9-5}\)
\(A^2=6+4=10\Rightarrow A=\sqrt{10}\)

Phép 1:
Ta có: \(3\cdot\sqrt{7-4\sqrt{3}}\)
\(=3\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=3\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=3\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
Phép 2:
Ta có: \(\sqrt{11+4\sqrt{7}}\)
\(=\sqrt{7+2\cdot\sqrt{7}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{7}+2\right)^2}\)
\(=\left|\sqrt{7}+2\right|\)
\(=\sqrt{7}+2\)(Vì \(\sqrt{7}+2>0\))
Phép 3:
Ta có: \(2\cdot\sqrt{11-4\sqrt{7}}\)
\(=2\cdot\sqrt{7-2\cdot\sqrt{7}\cdot2+4}\)
\(=2\cdot\sqrt{\left(\sqrt{7}-2\right)^2}\)
\(=2\cdot\left|\sqrt{7}-2\right|\)
\(=2\cdot\left(\sqrt{7}-2\right)\)(Vì \(\sqrt{7}>2\))
\(=2\sqrt{7}-4\)
Phép 4:
Ta có: \(\sqrt{19-4\sqrt{15}}\)
\(=\sqrt{15-2\cdot\sqrt{15}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{15}-2\right)^2}\)
\(=\left|\sqrt{15}-2\right|\)
\(=\sqrt{15}-2\)(Vì \(\sqrt{15}>2\))

Phép tính:
\(2\times\sqrt{15}-2\times\sqrt{10}+\sqrt{6}=1421411372\)
\(2\times\sqrt{15}-2\times\sqrt{10}+\sqrt{3}+\sqrt{6}=5602951922\)
P/s: Em ko biết đúng hay sai đâu mới lớp 4 thôi à

\(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=6\sqrt{2}-5\sqrt{2}-\left(\sqrt{2}-1\right)\)
\(=\sqrt{2}-\sqrt{2}+1\)
\(=1\)

mik viết nhầm đầu bài
khi x=4+2√3 thì giá trị của p=√x -2/3√x bằng bao nhiêu

Ta có:
VP= 3-2√3 + 1(vì 3 + 1 =4)
=√3^2 - 2√3 + √1^2
= (√3 - √1)^2

a) Ta có: \(\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\)
\(=\sqrt{5}-\sqrt{3}\)
c) Ta có: \(\sqrt{11-2\sqrt{30}}\)
\(=\sqrt{6-2\cdot\sqrt{6}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{6}-\sqrt{5}\right|\)
\(=\sqrt{6}-\sqrt{5}\)
d) Ta có: \(\sqrt{13-4\sqrt{3}}\)
\(=\sqrt{12-2\cdot\sqrt{12}\cdot1+1}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}\)
\(=\left|2\sqrt{3}-1\right|\)
\(=2\sqrt{3}-1\)
g) Ta có: \(\sqrt{9-2\sqrt{14}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{2}\right|\)
\(=\sqrt{7}-\sqrt{2}\)
\(4x=\left(2+\sqrt{3}\right)^2\\ \Leftrightarrow4x=2^2+2\cdot\sqrt{3}\cdot2+\left(\sqrt{3}\right)^2\\ \Leftrightarrow4x=4+4\sqrt{3}+3\\ \Leftrightarrow4x=7+4\sqrt{3}\\ \Leftrightarrow x=\dfrac{7+4\sqrt{3}}{4}\)
\(4x=\left(2+\sqrt{3}\right)^2\)
Vì: \(\left(2+\sqrt{3}\right)^2>0\Rightarrow4x>0\Rightarrow x>0\)
Ta có: \(4x=\left(2+\sqrt{3}\right)^2\Leftrightarrow\left(2\sqrt{x}\right)^2-\left(2+\sqrt{3}\right)^2=0\\ \Leftrightarrow\left(2\sqrt{x}+2+\sqrt{3}\right)\left(2\sqrt{x}-2-\sqrt{3}\right)=0\\ \Rightarrow\left[{}\begin{matrix}2\sqrt{x}+2+\sqrt{3}=0\\2\sqrt{x}-2-\sqrt{3}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}=-2-\sqrt{3}\left(PTVN.Vì:2\sqrt{x}>0\forall x>0\right)\\2\sqrt{x}=2+\sqrt{3}\end{matrix}\right.\\ \Leftrightarrow\sqrt{x}=\dfrac{2+\sqrt{3}}{2}\Leftrightarrow x=\left(\dfrac{2+\sqrt{3}}{2}\right)^2\)
\(\Leftrightarrow x=\dfrac{7+4\sqrt{3}}{4}\) (nhận)