![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, ke tia doi cua Ox la Ox'
=>goc x'Oy + yOx=180 ( 2 goc ke bu)
=>x'Oy = 180-120=60
ma OMm =60 (gt)
=> Oy//Mm ( dau hieu nhan bit 2 dt //)
b, co m'MO +OMm= 180 (ke bu)
=> m'MO = 180-60=120
ma Mt la pg OMm'
=> OMt= OMm'/2=120/2=60 (1)
* Ou la pg xOy => xOu= xOy/2=120/2=60
hay MOu =60 ( vi M thuoc Ox) (2)
1,2 => Ou // Mt ( DHNB2 dt //)
HINH THI CHIU KHO VE NHA
![](https://rs.olm.vn/images/avt/0.png?1311)
t x u m y m' M O 120 60
a) Vì \(\widehat{mMO}\) và \(\widehat{MOy}\) là 2 góc trong cùng phía
mà \(\widehat{mMO}+\widehat{MOy}=60^0+120^0=180^0\)
\(\Rightarrow Oy\) // Mm (đpcm)
Vậy Oy // Mm
b) Vì Ou là tia phân giác \(\widehat{xOy}\)
\(\Rightarrow\widehat{xOu}=\widehat{uOy}=\dfrac{1}{2}.\widehat{xOy}=\dfrac{1}{2}.120^0=60^0\)
Ta có: \(\widehat{m'MO}+\widehat{OMm}=180^0\) ( 2 góc kề bù)
\(\Rightarrow\widehat{OMm'}=180^0-\widehat{OMm}\)
\(\Rightarrow\widehat{OMm'}=180^0-60^0=120^0\)
Vì Mt là tia phân giác \(\widehat{OMm'}\)
\(\Rightarrow\widehat{m'Mt}=\widehat{tMO}=\dfrac{1}{2}.\widehat{m'MO}=\dfrac{1}{2}.120^0=60^0\)
Vì \(\widehat{tMO}\) và \(\widehat{xOu}\) là 2 góc so le trong
mà \(\widehat{tMO}=\widehat{xOu}\left(=60^0\right)\)
\(\Rightarrow Mt\) // Ou (đpcm)
Vậy Mt // Ou
![](https://rs.olm.vn/images/avt/0.png?1311)
f(x)=ax^2+bx+c
=>f(x-1)=a(x-1)^2 +b(x-1)+c
=a(x-1)(x-1)+b(x-10)+c
=(ax-a)(x-1)+bx+b+c=(ax-a)x-1(ax-a)+bx+b+c
=ax^2-ax-ax+a+bx+b+c
=ax^2-2ax+a+bx+b+c
=>f(x)-f(x-1)=(ax^2+bx+c)-(ax^2-2ax+a+bx+b+c)
=2ax+a+b=x
mà f(x)=f(x-1)=x
<=>2ax+a+b=x+0
<=>2a=1=>a=1/2
a+b=0=>b=-1/2
=>Đa thức có dạng 1/2x^2-1/2x+c
=>1=f(1)-f(0)
2=f(2)-f(1)
3=f(3)-(2)
n=f(n)-f(n-1)
=>S=f(n)-f(0)
NẾU THẤY ĐÚNG THÌ K CHO MK NHA BN!
Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=x22−x2+cf(x)=x22−x2+c
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=n22−n2=n(n−1)2
![](https://rs.olm.vn/images/avt/0.png?1311)
https://olm.vn/hoi-dap/detail/244405362245.html?pos=571054816568
*M*+*M*=*9* suy ra M=4 hoặc M=9.
- M=4 (loại) vì khi đó O+M=4 , O =0
- M=9 , F9O+O99=894 , suy ra O=5,F=2
thử lại: 295+599=894
F+M+O= 2+9+5=16