
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Mình nhìn rõ biểu thức trong ảnh là:
$$
V = \sqrt[3]{\,(x^2 - 4)^2\,}.
$$
---
### Phân tích:
* Đây là căn bậc 3 của $(x^2 - 4)^2$.
* Vì căn bậc 3 **luôn xác định với mọi số thực**, nên biểu thức có **tập xác định** là $\mathbb{R}$ (tất cả số thực).
---
### Biến đổi đơn giản hơn:
$$
V = \sqrt[3]{(x^2 - 4)^2} = \big|x^2 - 4\big|^{\tfrac{2}{3}}.
$$
---
✅ Kết luận:
* Tập xác định: $D = \mathbb{R}$.
* Dạng đơn giản: $V = |x^2 - 4|^{2/3}$.


c: \(y=-x^2+2x+3\)
=>\(y^{\prime}=-2x+2\)
Đặt y'<0
=>-2x+2<0
=>-2x<-2
=>x>1
=>Hàm số nghịch biến trên (1;+∞)
Đặt y'>0
=>-2x+2>0
=>-2x>-2
=>x<1
=>Hàm số đồng biến trên (-∞;1)
d: \(y=\frac13x^3+3x^2+5x+2\)
=>\(y^{\prime}=\frac13\cdot3x^2+3\cdot2x+5=x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
Đặt y'>0
=>(x+1)(x+5)>0
=>\(\left[\begin{array}{l}x>-1\\ x<-5\end{array}\right.\)
=>Hàm số đồng biến trên các khoảng (-1;+∞) và (-∞;-5)
Đặt y'<0
=>(x+1)(x+5)<0
=>-5<x<-1
=>Hàm số nghịch biến trên khoảng (-5;-1)

con hươu A nha,tick cho 1 cái đi,ko đúng ko tick cũng được nha


4.
Đáp án A đúng
\(y'=9x^2+3>0;\forall v\in R\)
6.
Đáp án B đúng
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)
Dựa vào đồ thị, ta thấy \(m=\min\limits_{\left[-1;3\right]}f\left(x\right)=f\left(2\right)=-4\)
và \(M=\max\limits_{\left[-1;3\right]}f\left(x\right)=f\left(-1\right)=2\)
Khi đó \(M+m=2-4=-2\)