Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
Ta có : \(x^2-4z-z^2+4x\)
\(=x^2-4z-z^2+4x+4-4\)
\(=\left(x^2+4x+4\right)-\left(z^2+4x+4\right)\)
\(=\left(x+2\right)^2-\left(z+2\right)^2\)( 1 )
Thay \(x=-2;z=8\)vào ta được :
\(\left(1\right)=\left(-2+2\right)^2-\left(8+2\right)^2\)
\(=-100\)
Dễ mà bạn
\(P=\left(x-y\right)\left(x^2+xy+y^2\right)-2y^3=x^3-y^3-2y^3=x^3-3y^3=\left(\frac{1}{2}\right)^3-3.\left(\frac{2}{3}\right)^3=\frac{-55}{72}\)
A=[(x-y).(x2+xy+y2)] +2y3
= x3-y3+2y3=x3+y3
=(2/3)3+(1/3)3
=4/9 + 1/9 =5/9
\(A=\left(2x-1\right)^2-\left(2x+3\right)\left(x-2\right)-2\left(x+2\right)\left(x+5\right)\)
\(=4x^2-4x+1-\left(2x^2-x-6\right)-2\left(x^2+7x+10\right)\)
\(=-17x-13\)
Thay x=-3 vào A,ta được
\(A=\left(-17\right)\cdot\left(-3\right)-13\)
\(=38\)
Vậy A=38 tại x=-3
A = ( 2x - 1 )2 - ( 2x + 3 )( x- 2) - 2( x + 2 )( x + 5 )
= 4x2 - 4x + 1 - 2x2 - 4x + 3x - 6 - 2x - 4 + x + 5
= 2x2 - 6x - 4
Thay x = -3 vào biểu thức ta được:
2 . ( -3 )2 - 6 . ( -3 ) - 4
= 2 . 9 - 6 . ( -3 ) -4
= 18 + 18 - 4
= 32
Hk tốt
3, \(C=x^2-8xy+16y^2\)
\(C=x^2-2\cdot4y\cdot x+\left(4y\right)^2\)
\(C=\left(x-4y\right)^2\)
Thay \(x-4y=5\) vào C ta được:
\(C=5^2=25\)
Vậy: ......
4, \(D=9x^2+1620-12xy+4y^2\)
\(D=\left(9x^2-12xy+4y^2\right)+1620\)
\(D=\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]+1620\)
\(D=\left(3x-2y\right)^2+1620\)
Thay \(3x-2y=20\) vào D ta được:
\(D=20^2+1620=400+1620=2020\)
Vậy: ...
3/
\(C=x^2-8xy+16y^2=x^2-2.4.xy+\left(4y\right)^2=\left(x-4y\right)^2\)
Thay x - 4y = 5 ta có: \(C=5^2=25\)
4/
\(D=9x^2-12xy+4y^2+1620\\ =\left(3x\right)^2-3.2.2xy+\left(2y\right)^2+1620\\ =\left(3x-2y\right)^2+1620\)
Thay 3x - 2y = 20. Ta có: \(D=20^2+1620=400+1620=2020\)
Bài này mình làm xong rồi nhưng lỡ tay bấm nút hủy.
MONG CÁC BẠN
$x^2-8xy+16y^2$
$=x^2-2.x.4y+(4y)^2$
$=(x-4y)^2$
$=5^2=25$