Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1024 : (17.25 + 15.25) = 210 : [25.(17+15)] = 210 : (25. 25) = 210 : 210 =1
b, (5.35 + 17.34) : 62 = 34.(5.3 + 17) : (2.3)2 = 34.25 : (22.32) = 32.23=72
c, (23.94 + 93.45) : (92.10 - 92) = 94.(23 + 5) : [92.(10-1)] = 94.13 : 93 = 9.13 =117
Đúng thì nha
1)\(2^3\cdot37-2^3\cdot63-10=2^3\left(37-63\right)-10=8\cdot-26-10\)=-218
2)\(2^3+2^2+2^4=2^2\left(1+2+4\right)=4\cdot7=28\)
3)\(5^3-5=5\left(5^2-1\right)=5\cdot24=120\)
4)\(3+3^2+3^4=3\left(1+3+3^3\right)=3\cdot13=39\)
5)\(x^{n+1}-x^n=x^n\left(x-1\right)\)
A=2+22+23+24+...+29
=(2+22+23)+(24+25+26)+(27+28+29)
=2.7+24.7+27.7 (vì 2+22+23=14=2.7 các phép tính sau cũng như zậy)
=7.(2+24+27)
=>A chia hết cho 7
k cho mình nhé
Ta có A = 2 ( 1+2+4) + 24(1+2+4) + 27(1+2+4)
=2*7 + 24*7 + 27*7
= 7 (2+24+27) chia hết cho 7
Vậy A chia hết cho 7
\(16^x< 128^4\)
=> \(\left[2^4\right]^x< \left[2^7\right]^4\)
=> \(2^{4x}< 2^{28}\)
=> 4x < 28
=> x < 7
Đến đây tìm x được rồi
\(\left[3x^2-5\right]+3^4+6^0=5^3\)
=> \(\left[3x^2-5\right]=5^3-6^0-3^4=43\)
=> \(3x^2-5=43\)
=> \(3x^2=48\)
=> \(x^2=16\)
=> \(x=\pm4\)
\(3x+2x\left[2^3\cdot5-3^2\cdot4\right]+5^2=4^4\)
=> \(3x+2x\left[8\cdot5-9\cdot4\right]+25=256\)
=> \(3x+2x\cdot4+25=256\)
=> \(3x+2x\cdot4=231\)
Đến đây tìm x
a ) Ta thấy mỗi thừa số của tổng đều chia hết cho 5 nên tổng \(5+5^2+5^3+5^4+5^5\) chia hết cho 5 hay tổng đó là hợp số
b) Ta thấy 2007 chia hết cho 3 nên \(2007^2\)chia hết cho 3 , 2010 chia hết cho 3 nên \(2010^4\)chia hết cho 3 . Khi đó \(2007^2+2010^4\)chia hết cho 3 hay tổng đó là hợp số
c) ko rõ nên mình ko làm
d ) Ta có \(7.8.9.10-2.3.4.5=7.8.3.3.2.5-2.3.4.5=7.8.3.2.\left(3.5\right)-\left(2.4\right).\left(3.5\right)\)
\(=7.8.2.3.15-8.15=8.15.\left(7.2.3-1\right)\)
Khi đó tích đó chia hết cho 8 và 15 hay tổng ban đầu chia hết cho 15 . Khi đó tổng là hợp số
\(177:\left[2.\left(4^2-9\right)+3^2.\left(15-10\right)\right]\)
\(=177:\left[2.\left(16-9\right)+3^2.5\right]\)
\(=177:\left[2.7+9.5\right]\)
\(=177:\left[14+45\right]\)
\(=177:59=3\)
\(\frac{11^{26}}{11^{23}}-\frac{3^5}{\left(1^{2020}+2^3\right)-60}\)
\(=11^3-\frac{243}{\left(1+8\right)-60}\)
\(=1331-\frac{243}{-51}=1331-\frac{-81}{17}\)
\(=1331+\frac{81}{17}\)
\(=\frac{22708}{17}\)
2) = 19683 . 3 : 59049 + 32 : 16 . 4 - 9 . 1
= 59049 : 59049 + 2 . 4 - 9
= 1 + 8 - 9
= 9 - 9
= 0
1) = {53^3 - 67 . [(169+144)].5 +7.3^4]} :2011
=[53^3 - 67 . (313 . 5 + 7 . 81 ] :2011
= [53^3 - 67. ( 1565 + 567 )] : 2011
= (53^3 - 67 . 2132) :2011
=(148877 - 142844 ) : 2011
= 6033 : 2011
= 3
\(\dfrac{3}{2}+\dfrac{5}{2^2}+\dfrac{9}{2^3}+\dfrac{17}{2^4}+...+\dfrac{1025}{2^{10}}\\ =\dfrac{2+1}{2}+\dfrac{2^2+1}{2^2}+\dfrac{2^3+1}{2^3}+\dfrac{2^4+1}{2^4}+...+\dfrac{2^{10}+1}{2^{10}}\\ =1+\dfrac{1}{2}+1+\dfrac{1}{2^2}+1+\dfrac{1}{2^3}+1+\dfrac{1}{2^4}+...+1+\dfrac{1}{2^{10}}\\ =10+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\right)\\ \)
Coi biểu thức trong ngoặc là A
Ta tính A như sau:
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\\ 2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}\right)\\ A=1-\dfrac{1}{2^{10}}\)
Biểu thức ban đầu được viết lại như sau:
\(\dfrac{3}{2}+\dfrac{5}{2^2}+\dfrac{9}{2^3}+\dfrac{17}{2^4}+...+\dfrac{1025}{2^{10}}=10+1-\dfrac{1}{2^{10}}\\ =11-\dfrac{1}{2^{10}}\)
daaus^laf dấu gì vậy