
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2+5y^2+2xy-4y<-3\)
=>\(x^2+2xy+y^2+4y^2-4y+1<-3+1=-2\)
=>\(\left(x+y\right)^2+\left(2y-1\right)^2<-2\)
mà \(\left(x+y\right)^2+\left(2y-1\right)^2\ge0\forall x,y\)
nên (x;y)∈∅

b) 5x2 +5y2 +8xy + 2x-2y+2 = 0
(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0
(x+1)2 + (y-1)2 +(2x+2y)2 = 0
=> (x+1)2 = 0 => x = -1
(y-1)2 = 0 => y = 1
(2x+2y)2 = 0
KL: x = -1; y = 1
a) 3x2 +5y2 = 345
=> x2 chia hết cho 5
=> x chia hết cho 5
đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3
đặt y = 3z => 15t2+9z2 =69
⇒5t2 +3z2 =23
...

Biến đổi biểu thức tương đương, ta có : x2−12=y2x2−12=y2
Lại có : x,y nguyên dương.
⇒x>y⇒x>y và x phải là số lẽ.
Từ đó đặt x=2k+1x=2k+1 (k nguyên dương)
Ta có biểu thức tương đương : 2k(k+1)=y2(∗)2k(k+1)=y2(∗)
Để ý rằng: y là 1 số nguyên tố nên y2y2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là {1 ; y ; y^2}
Từ (*) dễ thấy y2⋮2⇒y=2⇒k=1⇒x=3y2⋮2⇒y=2⇒k=1⇒x=3
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2


Ta có: \(\frac{1}{y-2}\)= \(\frac{x}{2y}\)
\(\Rightarrow\)2y = xy - 2x
\(\Rightarrow\)xy - 2x - 2y + 4 = 4
x(y - 2) - 2( y -2) =4
( x - 2) ( y - 2) =4
đến đấy bạn xét các trường hợp của x và y
nhớ bấm đúng cho mình nhé!

vì 6x2 và 74 \(⋮2\)
=> 5y2 \(⋮2\)
=> y2 \(⋮2\)( vì (5,2) = 1 )
=> y = 2 ( vì 2 là số nguyên tố chẵn duy nhất )
thay y = 2 vào bài ta được:
6x2 + 5.4 = 74
6x2 = 54
x2 = 9
=> x = 3
vậy x = 3 và y = 2
6x2 + 5y2 = 74 (1)
Ta có : 5x2 + 5y2 =< 6x2 + 5y2 =< 6x2 + 6y2
<=> 5(x2 + y2) =< 74 =< 6(x2 + y2)
<=> 12,3 =< x2 + y2 =< 14,8
<=> 13 =< x2 + y2 =< 14 (vì x, y tự nhiên => x2 + y2 tự nhiên)
Trường hợp 1 : x2 + y2 = 13 (2)
Ta có hệ :
6x2 + 5y2 = 74 (1)
x2 + y2 = 13 (2)
<=> 6x2 + 5y2 = 74
5x2 + 5y2 = 65
Trừ 2 phương trình : x2 = 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2 = 13 - x2 = 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2 + y2 = 14 (4)
Ta có hệ :
6x2 + 5y2 = 74 (1)
x2 + y2 = 14 (3)
<=> 6x2 + 5y2 = 74
5x2 + 5y2 = 70
Trừ 2 phương trình : x2 = 4 <=> x = 2
Thay vào (3) : y2 = 14 - 4 = 10 <=> y = \(\sqrt{10}\) (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3) .

Ta có:
\(6x^2+5y^2=74\left(1\right)\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}x^2+1⋮5\\0< x^2\le12\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}}}\)
Với \(x^2=4\Rightarrow y^2=10\) (loại)
Với \(x^2=9\Rightarrow y^2=4\) (thỏa mãn)
\(\Rightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{9}\\y=\sqrt{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-3;3\right)\\y=\left(-2;2\right)\end{cases}}}\)
Vậy...
\(x^2+5y^2< 4xy+2y\\ \Rightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)< 1\\ \Rightarrow\left(x-2y\right)^2+\left(y-1\right)^2< 1\) (1)
Vì x; y đều là các số nguyên
nên x-2y và y-1 cũng là các số nguyên (2)
Lại có: \(\left(x-2y\right)^2\ge0,\left(y-1\right)^2\ge0\Rightarrow\left(x-2y\right)^2+\left(y-1\right)^2\ge0\forall x,y\inℤ\) (3)
Từ (1) và (2) và (3) \(\Rightarrow0\le\left(x-2y\right)^2+\left(y-1\right)^2< 1\) và x-2y, y-1 là các số nguyên
Do đó: \(\left(x-2y\right)^2=\left(y-1\right)^2=0\\ \Rightarrow\left\{{}\begin{matrix}x-2y=0\\y-1=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=2.1=2\\y=1\end{matrix}\right.\left(nhận\right)\)
Hoặc bạn biện luận theo cách sau:
\(\left(x-2y\right)^2+\left(y-1\right)^2< 1\) (1)
Nhận thấy: \(\left(x-2y\right)^2\ge0,\left(y-1\right)^2\ge0\forall x,y\inℤ\) (2)
(1);(2) \(\Rightarrow0\le\left(x-2y\right)^2,\left(y-1\right)^2< 1\)
\(\Rightarrow-1< x-2y,y-1< 1\)
Mà: x-2y và y-1 đều là các số nguyên
Do đó nên: x-2y=y-1=0