\(^8\) và 16\(^{12}\)

b,(1/16)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2024

a) Ta có: 

\(64^8=\left(2^6\right)^8=2^{6\cdot8}=2^{48}\)

\(16^{12}=\left(2^4\right)^{12}=2^{4\cdot12}=2^{48}\)

\(\Rightarrow64^8=16^{12}\)

b) Ta có:

\(\left(\dfrac{1}{16}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{4\cdot10}=\left(\dfrac{1}{2}\right)^{40}\)

Mà: 50 > 40 => `(1/2)^50<(1/2)^40` 

c) Ta có: 

\(\left(\dfrac{9}{16}\right)^{100}=\left[\left(\dfrac{3}{4}\right)^2\right]^{100}=\left(\dfrac{3}{4}\right)^{200}\)

Mà: `3/4>2/3=>(3/4)^200>(2/3)^200`

28 tháng 6 2024

\(^{^{ }}\)a,64^8=16^12

b,(1/16)^10<(1/2)^50

c,(2/3)^200>(9/16)^100

CỦA BẠN ĐÂY NẾU SAI THÌ CHO MÌNH XIN LỖI NHÉ

 

5 tháng 8 2018

a) \(16^{12}=4^{2\cdot12}=4^{24}\)

\(64^8=4^{4\cdot8}=4^{32}\)

=>\(64^8>16^{12}\)

5 tháng 8 2018

b) 

\(5^{23}=5.5^{22}\)

=> \(6.5^{22}>5^{23}\)

9 tháng 1 2016

a) 10200=102.100=100100>99100
b)\(64^8=\left(4^3\right)^8=4^{3.8}=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
\(\Rightarrow64^8=16^{12}\)
c)\(6^{100}=3^{100}.2^{100}\)
\(3^{170}=3^{100}.3^{70}\)
Có :\(2^{99}=\left(2^3\right)^{33}=8^{33}\Rightarrow2^{100}=8^{33}.2<8^{34}\)
Mà\(3^{70}=\left(3^2\right)^{35}=9^{35}>8^{35}>8^{34}\)
\(6^{100}<3^{170}\)

9 tháng 1 2016

a, 10200 = (102)100 = 100100 > 99100

=> 10200 > 9100 

18 tháng 5 2021

\(a.\)

\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)

\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)

\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)

\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)

\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)

\(10A=1+\frac{9}{10^{16}+1}\)

\(B=\frac{10^{16}+1}{10^{17}+1}\)

\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}\)

\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)

\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)

\(10B=1+\frac{9}{10^{17}+1}\)

\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)

19 tháng 5 2021

xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)

\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)

\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)

Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B

1 tháng 11 2016

giờ trả lời còn được tick ko bạn

4 tháng 11 2016

được mà bn

15 tháng 7 2017

a/ \(8^5=\left(2^3\right)^5=2^{15}\)và \(32^3=\left(2^5\right)^3=2^{15}\Rightarrow8^5=32^3\)

b/ \(27^4=\left(3^3\right)^4=3^{12}\) và \(9^6=\left(3^2\right)^6=3^{12}\Rightarrow27^4=9^6\)

c/ \(23^{17}-23^{16}=23^{16}\left(23-1\right)=22.23^{16}\)

\(23^{16}-23^{15}=23^{15}\left(23-1\right)=22.23^{15}\)

\(\Rightarrow22.23^{16}>22.23^{15}\Rightarrow23^{17}-23^{16}>23^{16}-23^{15}\)

d/ \(\frac{3^{2015}+1}{3^{2016}}=\frac{1}{3}+\frac{1}{3^{2016}}\) và \(\frac{3^{2016}+1}{3^{2017}+1}=\frac{3^{2017}+3}{3\left(3^{2017}+1\right)}=\frac{3^{2017}+1+2}{3\left(3^{2017}+1\right)}=\frac{1}{3}+\frac{2}{3}.\frac{1}{3^{2017}+1}\)

\(\frac{1}{3^{2016}}>\frac{1}{3^{2017}}>\frac{1}{3^{2017}+1}>\frac{2}{3}.\frac{1}{3^{2017}+1}\)

\(\Rightarrow\frac{3^{2015}+1}{3^{2016}}>\frac{3^{2016}+1}{3^{2017}+1}\)

Câu cuối phân tích tương tự

Câu 1 :

a) \(4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)

\(=2^2.32^2:\left(\frac{1}{8}.16\right)=\left(2.32\right)^2:2=64^2:2\)

\(=2048=2^{11}\)

b) \(5^2.3^5.\left(\frac{3}{5}\right)^2\)

\(=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)

7 tháng 8 2019

VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ

\(a,4\cdot\left(\frac{1}{32}\right)^{-2}:\left(2^3\cdot\frac{1}{16}\right)\\ =4\cdot1024:\left(8\cdot\frac{1}{16}\right)\\ =4\cdot1024:\frac{1}{2}\\ =2\cdot1024\\ =2\cdot2^{10}\\ =2^{11}\)

\(b,5^2\cdot3^5\cdot\left(\frac{3}{5}\right)^2\\ =5^2\cdot\left(\frac{3}{5}\right)^2\cdot3^5\\ =3^2\cdot3^5\\ =3^7\)

2 SO SÁNH

\(a,10^{20}\text{ và }9^{10}\)

Có: \(9^{10}=\left(3^2\right)^{10}=3^{20}\)

\(\Rightarrow10^{20}>3^{20}\\ \text{hay}\text{ }10^{20}>9^{10}\)

\(b,\left(-5\right)^3\text{ và }\left(-3\right)^{50}\)

Có: \(\left(-3\right)^{50}=3^{50}\)

\(\Rightarrow\left(-5\right)^3< 3^{50}\\ \text{hay }\left(-5\right)^3< \left(-3\right)^{50}\)

\(c,64^3\text{ và }16^{12}\)

Có: \(64^3=\left(4^3\right)^3=4^9;16^{12}=\left(4^2\right)^{12}=4^{24}\)

\(\Rightarrow4^9< 4^{24}\\ hay\text{ }64^3< 16^{12}\)

\(d,\left(\frac{1}{16}\right)^{10}\text{ và }\left(\frac{1}{2}\right)^{50}\)

Có: \(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2}\right)^{5\cdot10}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\\ \text{hay }\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

23 tháng 4 2017

Ai trả lời giúp mik nha

15 tháng 7 2019

b) Áp dụng  tính chất

\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)

Ta có: \(B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10.\left(10^{15}+1\right)}{10.\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)

\(\Rightarrow B< A\)

18 tháng 7 2019

\(B< 1\Rightarrow\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)

\(\Rightarrow A>B\)

29 tháng 8 2017

bài khó quá giải cũng dài luôn

29 tháng 8 2017

\(Ai\)\(giúp\)\(mình\)\(bài\)\(kia\)\(đi\)