\(\dfrac{3}{7}\)x-1=\(\dfrac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2024

\(\dfrac{3}{7}x-1=\dfrac{1}{7}x\left(3x-7\right)\)

⇔ \(\dfrac{3}{7}x-\dfrac{7}{7}=\dfrac{3}{7}x^2-\dfrac{7}{7}x\)

⇔ \(\dfrac{3}{7}x-\dfrac{7}{7}-\dfrac{3}{7}x^2+\dfrac{7}{7}x=0\)

⇔ \(\dfrac{3}{7}x\left(1-x\right)-\dfrac{7}{7}\left(1-x\right)=0\)

⇔ \(\left(1-x\right)\left(\dfrac{3}{7}x-\dfrac{7}{7}\right)=0\)

⇔ \(\left[{}\begin{matrix}1-x=0\\\dfrac{3}{7}x-\dfrac{7}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{3}\end{matrix}\right.\)

Vậy pt có 2 nghiệm pt : \(x=1;x=\dfrac{7}{3}\)

 

26 tháng 6 2024

khó

 

4 tháng 4 2017

a) 5x2 + 2x = 4 – x ⇔ 5x2 + 3x – 4 = 0; a = 5, b = 3, c = -4

b) x2 + 2x – 7 = 3x + x2 – x - = 0, a = , b = -1, c = -

c) 2x2 + x - √3 = √3 . x + 1 ⇔ 2x2 + (1 - √3)x – 1 - √3 = 0

Với a = 2, b = 1 - √3, c = -1 - √3

d) 2x2 + m2 = 2(m – 1)x ⇔ 2x2 - 2(m – 1)x + m2 = 0; a = 2, b = - 2(m – 1), c = m2



11 tháng 12 2018

a,\(\sqrt{3x+1}=3x-1\) Đk:\(x\ge\dfrac{-1}{3}\)

\(< =>3x+1=9x^2-6x+1\)

\(< =>9x-9x^2=0\)

\(< =>9x\left(1-x\right)=0\)

\(< =>x=0\) hoặc \(x=1\)
b,\(2+\sqrt{3x-5}=x+1\) Đk:\(x\ge\dfrac{5}{3}\)

\(< =>\sqrt{3x-5}=x-1\)

\(< =>3x-5=x^2-2x+1\)

\(< =>x^2+x+6=0\)(vô lý vì \(x^2\ge\dfrac{25}{9},x\ge\dfrac{5}{3}\))

=>\(x\in\varnothing\)

c,Đk : \(x\ge\dfrac{-7}{5}\)

\(\)\(\dfrac{5x+7}{x+3}=16\)

\(< =>5x+7=16x+48\)

\(< =>-11x=41 \)

\(< =>x=\dfrac{-41}{11}\)(ko tm đk)

\(=>x\in\varnothing\)

d,tương tự câu c bình phương 2 vế cũng ra \(x\in\varnothing\)

21 tháng 1 2018

phương trình 2 ⇔\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}=7-3xy\)\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2=7-3xy\)

đoạn sau bạn tự giải nha

29 tháng 9 2017

a/ \(\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9x-9}+24.\sqrt{\dfrac{x-1}{64}}=-17\) ( đkxđ : \(x\ge1\) )

\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3}{2}.\sqrt{3^2\left(x-1\right)}+24.\sqrt{\dfrac{x-1}{8^2}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}.\sqrt{x-1}-\dfrac{3.3}{2}.\sqrt{x-1}+\dfrac{24}{8}\sqrt{x-1}=-17\)

\(\Leftrightarrow\) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)=-17\)

\(\Leftrightarrow\sqrt{\left(x-1\right)}.\left(-1\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{-17}{-1}=17\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=17^2\)

\(\Leftrightarrow x-1=289\)

\(\Leftrightarrow x=289+1=290\)

vậy x= 290 là nghiệm của phương trình a

b/ \(3x-7\sqrt{x}+4=0\) ( đkxđ : \(x\ge0\) )

\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(3\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-4=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{4}{3}\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{9}\\x=1\end{matrix}\right.\)

vậy phương trình có tập nghiệm S=\(\left\{1;\dfrac{16}{9}\right\}\)

c/ \(-5x+7\sqrt{x}+12=0\) ( đkxđ: \(x\ge0\) )

\(\Leftrightarrow-\left(5x+5\sqrt{x}-12\sqrt{x}-12\right)=0\)

\(\Leftrightarrow-\left[5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)\right]\)= 0

\(\Leftrightarrow-\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)

\(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1>0\)
\(\Rightarrow5\sqrt{x}-12=0\)

\(\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Rightarrow x=\dfrac{144}{25}\)

vậy \(x=\dfrac{144}{25}\) là nghiệm của phương trình c

13 tháng 7 2017

b) đặt \(\sqrt{3x+1}=a\)(\(a\ge0\))

\(PT\Leftrightarrow\dfrac{a^2-1}{\sqrt{a^2+9}}+1=a\)

\(\Leftrightarrow\left(a-1\right)\left(1-\dfrac{a+1}{\sqrt{a^2+9}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+1=\sqrt{a^2+9}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)(tm)

c) bunyalovsky:

\(VT^2\le2\left(7-x+x-5\right)=4\)

\(\Leftrightarrow VT\le2\)

\(VF=\left(x-6\right)^2+2\ge2\)

Dấu = xảy ra khi x=6

12 tháng 12 2016

cái 1 thêm đk nữa quên mất

2, bình phương 2 vế luôn ( có điều kiện nữa vào)

đc 2\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=9-5=4

\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=2

(1-x)(x+4)=4

=>x=0;-3

12 tháng 12 2016

1 chuyển vế bình phương đc

3x+7=4+4*sqrt(x+1) + x+1

2x+2=4*sqrt(x+1)

x+1-2*sqrt(x+1)+1=1 (thêm +1 vào 2 vế)

(sqrt(x+1)-1)^2=1

chia 2 trường hợp 1 là sqrt(x+1)-1=1=>x=3

          trường hớp 2 là  sqrt(x+1)-1=-1=>x=-1