Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2025}-\sqrt{2024}}\)
Ta nhận xét thấy mỗi số hạng trong S đều dương. Từ đó ta đặt
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2024}-\sqrt{2023}}\left(A>0\right)\)
\(\Rightarrow S=A+\frac{1}{\sqrt{2025}-\sqrt{2024}}=A+\frac{\sqrt{2025}+\sqrt{2024}}{\left(\sqrt{2025}-\sqrt{2024}\right)\left(\sqrt{2025}+\sqrt{2024}\right)}\)
\(=A+\sqrt{2025}+\sqrt{2024}>\sqrt{2025}=45\)
Vậy \(S>45\)
PS: Phan Thanh Tịnh xem lại bài giải nhé bạn
Ta có : 1 = (n + 1) - n =\(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)
\(=\left(\sqrt{n+1}\right)^2-\sqrt{n+1}.\sqrt{n}+\sqrt{n+1}.\sqrt{n}+\left(\sqrt{n}\right)^2\)
\(=\sqrt{n+1}.\left(\sqrt{n+1}-\sqrt{n}\right)+\sqrt{n}.\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n-1}+\sqrt{n}\right)\)\
\(\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Áp dụng vào bài toán,ta có :
\(S=\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2025}-\sqrt{2024}=\sqrt{2025}\)= 45
Vậy S = 45

c, |2\(x\) + 1| + |3\(x\) - 1| = 0
vì |2\(x\) + 1| ≥ 0; |3\(x\) - 1| = 0
⇒ |2\(x\) + 1| + |3\(x\) - 1| = 0
⇔ \(\left\{{}\begin{matrix}2x+1=0\\3x-1=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2x=-1\\3x=1\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(-\dfrac{1}{2}\) < \(\dfrac{1}{3}\)
Vậy \(x\) \(\in\) \(\varnothing\)
a, Nếu 4.|3\(x\) - 1| = |6\(x\) - 2| + |-1,5|
4.|3\(x\) -1| - 2.|3\(x\) - 1| = 1,5
Nếu 3\(x\) - 1 ≥ 0 ⇒ \(x\) ≥ \(\dfrac{1}{3}\)
Ta có: 4.(3\(x\) - 1) - 2.(3\(x\) - 1) = 1,5
12\(x\) - 4 - 6\(x\) + 2 = 1,5
6\(x\) - 2 = 1,5
6\(x\) = 1,5 + 2
6\(x\) = 3,5
\(x\) = 3,5: 6
\(x\) = \(\dfrac{7}{12}\)
Nếu 3\(x\) - 1 < 0 ⇒ \(x\) < \(\dfrac{1}{3}\)
Ta có: - 4.(3\(x\) - 1) = - (6\(x\) - 2) + 1,5
-12\(x\) + 4 + 6\(x\) - 2 = 1,5
-6\(x\) + 2 = 1,5
6\(x\) = 2- 1,5
6\(x\) = 0,5
\(x\) = 0,5 : 6
\(x\) = \(\dfrac{1}{12}\)
Vậy \(x\) \(\in\) {\(\dfrac{1}{12}\); \(\dfrac{7}{12}\)}

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$

Ta có: \(\left(2x-1\right)^{2024}\ge0\)
\(\left|x+y+1\right|\ge0\) nên \(\left|x+y+1\right|^{2025}\ge0\)
Suy ra: \(\left(2x-1\right)^{2024}+\left|x+y+1\right|^{2025}\ge0\)
Dấu "=" xảy ra khi và chỉ khi:
\(\begin{cases}2x-1=0\\ x+y+1=0\end{cases}\rArr\begin{cases}2x=1\\ x+y=-1\end{cases}\rArr\begin{cases}x=\frac12\\ y=-1-\frac12=-\frac32\end{cases}\)
Vậy: \(x=\frac12;y=-\frac32\)
2x−1)2024≥0 vì lũy thừa bội/chẵn của một số cho kết quả không âm
\(\mid x + y + 1 \mid^{2025} = \left(\right. \mid x + y + 1 \mid \left.\right)^{2025} \geq 0\) vì giá trị tuyệt đối không âm, mũ lẻ hay chẵn đều không làm nó âm
Nếu tổng của hai số không âm bằng \(0\) thì mỗi số phải bằng \(0\) (nếu một trong hai dương thì tổng > 0 — mâu thuẫn)
Vậy
\(\left(\right. 2 x - 1 \left.\right)^{2024} = 0 \Rightarrow x = \frac{1}{2} ,\) \(\mid x+y+1\mid^{2025}=0\Rightarrow\mid x+y+1\mid=0\Rightarrow y=-x-1\)Thay \(x = \frac{1}{2}\) được \(y = - \frac{3}{2}\)
vậy
\(\left(\right.x,y\left.\right)=\left(\right.\frac{1}{2},\textrm{ }-\frac{3}{2}\left.\right)\)

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110

a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
=>\(8\cdot x+1\cdot x=3305+1\)
=>\(9x=3306\)
=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)
b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)
=>\(2^x\left(1+2+4+8\right)=480\)
=>\(2^x\cdot15=480\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>x+5
Tìm số dư trong phép chia (2023\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\)chia cho 111


Lời giải:
\(S=(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2025})-(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2024})\\ =(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2025})-2(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2024})\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2025}-(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1012}\\ =\frac{1}{1013}+\frac{1}{1014}+...+\frac{1}{2025}\\ =P\)
$\Rightarrow (S-P)^{2025}=0^{2025}=0$
hỏi
C = 2010 1 + 2009 2 + 2008 3 + . . . + 1 2010 1 2 + 1 3 + 1 4 + . . . + 1 2011