K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=1+2+2^2+...+2^{2011}\)

=>\(2A=2+2^2+...+2^{2012}\)

=>\(2A-A=2+2^2+...+2^{2012}-1-2-...-2^{2011}\)

=>\(A=2^{2012}-1\)

\(D=2^{2012}-A=2^{2012}-2^{2012}+1=1\)

19 tháng 6 2024

Đặt 𝐴=1+2+22+...+22011A=1+2+22+...+22011

=>2𝐴=2+22+...+220122A=2+22+...+22012

=>2𝐴−𝐴=2+22+...+22012−1−2−...−220112AA=2+22+...+2201212...22011

=>𝐴=22012−1A=220121

𝐷=22012−𝐴=22012−22012+1=1D=22012A=2201222012+1=1

19 tháng 2 2017

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2012}{1}+\frac{2011}{2}+...+\frac{2}{2011}+\frac{1}{2012}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\left(1+\frac{2011}{2}\right)+...+\left(1+\frac{2}{2011}\right)+\left(1+\frac{1}{2012}\right)+1\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=\frac{2013}{2}+...+\frac{2013}{2011}+\frac{2013}{2012}+\frac{2013}{2013}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)x=2013\left(\frac{1}{2}+...+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\right)\)

\(\Rightarrow x=2013\)

Vậy x = 2013

12 tháng 2 2017

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)

26 tháng 7 2015

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                       \(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                       \(<1-\frac{1}{2010}\)

                                                       \(<\frac{2009}{2010}<1\)

=>N<1