Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a bạn phân tích \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ac\right)\)
rồi suy ra bình thường nha
\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow a^4-2^2b^2+b^4+c^4-2c^2d^2+d^4-4abcd+2a^2b^2+2c^2d^2=\left(a^2+b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab+cd\right)^2\)
khánh hòa 5b ơi tớ yêu bạn từ lúc mới gặp bạn ở trường mầm non bạn chấp nhận làm bạn gái tớ nhé lê hồng huy lớp 5a
Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc
\(\Leftrightarrow\) (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc
\(\Leftrightarrow\) (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
\(\Leftrightarrow\) (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc(1)
Vì a+b+c=0.PT (1) có dạng
\(\Leftrightarrow\) 03=a3+b3+c3+3.0(ab+bc+ac)-3abc
\(\Leftrightarrow\) 0=a3+b3+c3-3abc
=>a3+b3+c3=3abc(đpcm)
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c\) (1)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(a^3+3a^2b+3ab^2+b^3=-c^3\)
\(a^3+b^3+c^3+3ab.\left(a+b\right)=0\)(2)
Thay (1) vào (2) ta có:
\(a^3+b^3+c^3+3ab.\left(-c\right)=0\)
\(a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\)\(a^3+b^3+c^3=3abc\)
đpcm
Tham khảo nhé~
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=\left(-c\right)^3\)
\(\Rightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Mà \(a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(-c\right)=3abc\left(đpcm\right)\)
#)Giải :
Ta có : \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c\)
\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Vì \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
Ta có:
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^3=0\)
\(\Rightarrow a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6abc=0\)
\(\Rightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ac\right)=3abc\)
Vì a + b + c = 0
\(\Rightarrow a^3+b^3+c^3=3abc\)
Do \(3abc⋮3abc\)
\(\Rightarrow a^3+b^3+c^3⋮3abc\)
Ta có:
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(=a^3+b^3+3a^2b+3ab^2\)
\(=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay vào \(a^3+b^3+c^3=0\), ta được:
\(VT=a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
Vì \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Leftrightarrow a^3+b^3+c^3=\left(-c\right)^{^3}-3ab\left(-c\right)+c^3\)
\(\Leftrightarrow a^3+b^3+c^3=\left(-c\right)^3+c^3+3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
\(\RightarrowĐPCM\).
a3+b3+c3−3abca3+b3+c3−3abc
=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)
=(a+b)3+c3−3ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2−ab−bc−ca)=(a+b+c)(a2+b2+c2−ab−bc−ca)
Lời giải:
$a+b+c=0\Rightarrow a+b=-c$. khi đó:
$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3$
$=-c^3+3abc+c^3=3abc$
Ta có đpcm.
ta có: a+b+c=0
=> c=-(a+b)
ta thay vào biểu thức:
=>a3+b3-(a+b)3=3ab(-a-b)
=>-3a2b-3ab2=-3a2b-3ab2