Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm của (d) và (P):
x 2 = m x + 5 ⇔ x 2 − m x − 5 = 0 .
Ta có tích hệ số a c = − 5 < 0 nên phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi m hay thẳng (d) cắt parabol (P) tại hai điểm phân biệt với mọi m.
Theo hệ thức Vi-ét ta có x 1 + x 2 = m x 1 x 2 = − 5 Ta có:
x 1 > x 2 ⇔ x 1 2 > x 2 2 ⇔ x 1 2 − x 2 2 > 0 ⇒ x 1 + x 2 x 1 − x 2 > 0
Theo giả thiết: x 1 < x 2 ⇔ x 1 − x 2 < 0 do đó x 1 + x 2 < 0 ⇔ m < 0 .
Vậy thỏa mãn yêu cầu bài toán.
Phương trình hoành độ giao điểm: \(x^2-2x-2m=0\)
\(\Delta'=1+2m\ge0\Rightarrow m\ge-\dfrac{1}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2m\end{matrix}\right.\)
\(\left(1+y_1\right)\left(1+y_2\right)=5\)
\(\Leftrightarrow\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)
\(\Leftrightarrow\left(x_1x_2\right)^2+x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2-4=0\)
\(\Leftrightarrow4m^2+4m=0\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\left(ktm\right)\end{matrix}\right.\)
Pt hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=2x-m^2-1\Leftrightarrow x^2+4x-2\left(m^2+1\right)=0\)
\(ac=-2\left(m^2+1\right)< 0\) ; \(\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm có hoành độ trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-2\left(m^2+1\right)\end{matrix}\right.\)
Ta có: \(\dfrac{1}{x_1}=\dfrac{1}{\left|x_2\right|}+\dfrac{1}{2}>0\Rightarrow x_1>0\Rightarrow x_2< 0\Rightarrow\dfrac{1}{\left|x_2\right|}=-\dfrac{1}{x_2}\)
Do đó:
\(\dfrac{1}{x_1}=\dfrac{1}{\left|x_2\right|}+\dfrac{1}{2}\Leftrightarrow\dfrac{1}{x_1}=-\dfrac{1}{x_2}+\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{-4}{-2\left(m^2+1\right)}=\dfrac{1}{2}\Leftrightarrow m^2+1=4\)
\(\Leftrightarrow m^2=3\Rightarrow m=\pm\sqrt{3}\)
Phương trình hoành độ giao điểm của (P) và d: x 2 − m x + 2 = 0 (1)
P) cắt d tại hai điểm phân biệt A(x1;y1) và B(x2;y2) ⇔ (1) có hai nghiệm phân biệt
⇔ ∆ = m2 – 4.2 > 0 ⇔ m2 > 8 ⇔ m > 2 2 hoặc m<- 2 2
Khi đó x1, x2 là nghiệm của (1). Áp dụng định lí Vi–ét ta có x1 + x2 = m; x1x2 = 2.
Do A, B ∈ d nên y1 = mx1 – 2 và y2 = mx2 – 2.
Ta có:
y 1 + y 2 = 2 ( x 1 + x 1 ) − 1 < = > m x 1 − 2 + m x 2 − 2 = 2 ( x 1 + x 2 ) − 1 < = > ( m − 2 ) ( x 1 + x 2 ) − 3 = 0 < = > m ( m − 2 ) − 3 = 0 < = > m 2 − 2 m − 3 = 0
⇔ m = –1 (loại) hoặc m = 3 (thỏa mãn)
Vậy m = 3 là giá trị cần tìm.
PTHĐGĐ là;
x^2-3x-m^2+1=0
Δ=(-3)^2-4(-m^2+1)=4m^2-4+9=4m^2+5>0
=>Phương trình luôn có hai nghiệm phân biệt
TH1: x1>0; x2>0
=>x1+2x2=3
mà x1+x2=3
nên x1=1; x2=1
x1*x2=-m^2+1
=>-m^2+1=1
=>m=0
TH2: x1<0; x2>0
=>-x1+2x2=3 và x1+x2=3
=>x1=1; x2=2
x1*x2=-m^2+1
=>-m^2+1=2
=>-m^2-1=0(loại)
TH2: x1>0; x2<0
=>x1-2x2=0 va x1+x2=3
=>x1=2 và x2=1
x1*x2=-m^2+1
=>-m^2+1=2
=>-m^2=1(loại)
TH3: x1<0; x2<0
=>-x1-2x2=3 và x1+x2=3
=>x1=9 và x2=-6
x1*x2=-m^2+1
=>-m^2+1=-54
=>-m^2=-55
=>\(m=\pm\sqrt{55}\)
PTHĐGĐ là:
x^2-(2m+1)x+2m=0
Δ=(2m+1)^2-4*2m
=4m^2+4m+1-8m=(2m-1)^2
Để (P) cắt (d) tại hai điểm phân biệt thì 2m-1<>0
=>m<>1/2
y1+y2-x1x2=1
=>(x1+x2)^2-3x1x2=1
=>(2m+1)^2-3*2m=1
=>4m^2+4m+1-6m-1=0
=>4m^2-2m=0
=>m=0 hoặc m=1/2(loại)
giải giúp e câu này với ạ