Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúng ta có thể sử dụng công thức tổng của dãy số mũ ba để tính tổng này:
1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + 3 + ... + n)^2
Áp dụng công thức này vào đề bài, ta có:
M = (1^3 + 2^3 + 3^3 + ... + 2024^3) = (1 + 2 + 3 + ... + 2024)^2
Do đó, M là bình phương của một số nguyên, vì tổng các số nguyên từ 1 đến 2024 là một số nguyên. Do đó, ta kết luận rằng M thuộc tập số nguyên.
\(1:\dfrac{2}{3}:\dfrac{3}{4}:\dfrac{4}{5}:...:\dfrac{2024}{2025}\)
= \(1\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{2025}{2024}=\dfrac{2025}{2}\)
A=1/2+1/3+..+1/2019 < 1>
A= 1+1/2+1/3+..+1/2019 < 1>
A=1+1/2+1/3+..+1/2019 <1>
A=1+1/2+1/3+..+1/2019 <2018>
Vì 2018/2019 <1>
nên A=1/2+1/3+..+1/2019<1>
=> A=1/2+1/3+..+1/2019 không phải là số tự nhiên.
Mình chưa hiểu cách bạn làm với dấu <1> cho lắm.
Theo mình hiểu thì bạn đang chứng minh $A< 1$ nên $A$ không phải số tự nhiên. Mà điều này thì sai vì $A=1+(\frac{1}{2}+\frac{1}{3}+...)$ hiển nhiên lớn hơn $1$.
\(\dfrac{3}{4}B=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+\left(\dfrac{3}{4}\right)^3-....-\left(\dfrac{3}{4}\right)^{2024}+\left(\dfrac{3}{4}\right)^{2025}\)
=>\(\dfrac{7}{4}B=\left(\dfrac{3}{4}\right)^{2025}+1\)
=>\(B\cdot\dfrac{7}{4}=\dfrac{3^{2025}+4^{2025}}{4^{2025}}\)
=>\(B=\dfrac{3^{2025}+4^{2025}}{4^{2024}\cdot7}\)
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
A<1/2-1/3 + 1/3-1/4 + 1/4 - 1/5 + .... +1/2024-1/2025
A<1/2 => 0<S<1
=> S Ko thuộc N
Công thức Tổng quát : 1/(n+1)^2 < 1/n+1/n+1
A<1/2-1/3 + 1/3-1/4 + 1/4 - 1/5 + .... +1/2024-1/2025
A<1/2 => 0<S<1
=> A Ko thuộc N
Công thức Tổng quát : 1/(n+1)^2 < 1/n+1/n+1
phần bên dưới tớ ghi nhầm hjhj