Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thùng dầu ở mỗi thùng lần lượt là a, b, c (lít; a, b, c ∈ N*)
Vì số dầu ở thùng thứ nhất bằng \(\dfrac{2}{3}\) số dầu ở thùng thứ ba, số dầu ở thừng thứ hai bằng \(\dfrac{3}{4}\) số dầu ở thùng thứ nhất, thùng thứ ba nhiều hơn thùng thứ hai 45 lít dầu, nên:
\(a=\dfrac{2}{3}c;b=\dfrac{3}{4}a\) và \(c-b=45\)
\(\Rightarrow c=\dfrac{3}{2}a\)
\(\Rightarrow c-b=\dfrac{3}{2}a-\dfrac{3}{4}a=45\)
\(\Rightarrow\dfrac{3}{4}a=45\Leftrightarrow a=60\) (tmđk)
Khi đó: \(\left\{{}\begin{matrix}b=\dfrac{3}{4}.60=45\\c=\dfrac{3}{2}.60=90\end{matrix}\right.\) (tmđk)
Vậy...
Thùng 2 có \(10,5+3=13,5\left(l\right)\)
Thùng 3 có \(\left(10,5+13,5\right):2=12\left(l\right)\)
3 thùng có \(10,5+13,5+12=36\left(l\right)\)
Thùng 2 có:
10,5+3=13,5(lít)
Thùng 3 có:
(10,5+13,5):2=12(lít)
Như vậy, lúc đầu số dầu ở thùng 1 nhiều hơn số dầu ở thùng 2 là 4 lít.
Sau khi chuyển 2 lít từ thùng 2 sang thùng 1 thì thùng 1 nhiều hơn thùng 2 la2 8 lít. Tỷ số giữ hai thùng là: 3/1.
Hiệu số phần bằng nhau là: 3-1 = 2.
Số dầu ở thùng 1 lúc này là: 8:2 x 3 = 12 (lít). Vậy số dầu ở thùng 1 lúc đầu là: 12-2 = 10 (lít)
Số dầu ở thùng 2 lúc đầu là: 10 - 4 = 6 (lít).
Đáp số: 10 lít và 6 lít
Như vậy, lúc đầu số dầu ở thùng 1 nhiều hơn số dầu ở thùng 2 là 4 lít.
Sau khi chuyển 2 lít từ thùng 2 sang thùng 1 thì thùng 1 nhiều hơn thùng 2 la2 8 lít. Tỷ số giữ hai thùng là: 3/1.
Hiệu số phần bằng nhau là: 3-1 = 2.
Số dầu ở thùng 1 lúc này là: 8:2 x 3 = 12 (lít). Vậy số dầu ở thùng 1 lúc đầu là: 12-2 = 10 (lít)
Số dầu ở thùng 2 lúc đầu là: 10 - 4 = 6 (lít).
Đáp số: 10 lít và 6 lít
Gọi $x_1, x_2, x_3, x_4$ lần lượt là số lít dầu trong các thùng thứ nhất, thứ hai, thứ ba và thứ tư. Theo đề bài, ta có hệ phương trình sau:
$\begin{cases} x_1 + x_2 + x_3 + x_4 = 154 \ x_1 = \frac{2}{7}(x_1 + x_2 + x_3 + x_4) \ x_2 = \frac{4}{3}(x_1 + x_2 + x_3 + x_4) \ \frac{3}{5}x_3 - 5 = \frac{1}{3}(x_4 + 5) \end{cases}$
Để giải hệ phương trình này, ta sẽ áp dụng phương pháp khử Gauss để tìm nghiệm của hệ phương trình.
Bước 1: Chuyển hệ phương trình về dạng ma trận mở rộng:
$\left(\begin{array}{cccc|c} 1 & -\frac{2}{7} & -1 & 0 & 0 \ \frac{4}{3} & -1 & -1 & 0 & 0 \ 0 & 0 & \frac{3}{5} & -\frac{1}{3} & -\frac{10}{3} \ 1 & 1 & 1 & 1 & 154 \end{array}\right)$
Bước 2: Biến đổi ma trận sao cho phần tử ở cột đầu tiên và hàng đầu tiên là 1, các phần tử còn lại trong cột đầu tiên là 0:
$\left(\begin{array}{cccc|c} 1 & -\frac{2}{7} & -1 & 0 & 0 \ 0 & \frac{27}{7} & \frac{1}{3} & 0 & 0 \ 0 & \frac{6}{7} & \frac{9}{5} & -\frac{1}{3} & -\frac{10}{3} \ 0 & \frac{9}{7} & 2 & 1 & 154 \end{array}\right)$
Bước 3: Biến đổi ma trận sao cho các phần tử trong hàng thứ hai và cột thứ hai là 0, các phần tử còn lại trong cột thứ hai là 0:
$\left(\begin{array}{cccc|c} 1 & 0 & -\frac{19}{27} & 0 & 0 \ 0 & 1 & \frac{7}{81} & 0 & 0 \ 0 & 0 & \frac{67}{27} & -\frac{1}{3} & -\frac{10}{3} \ 0 & 0 & \frac{170}{27} & 1 & 154
Thùng 1 có 154*2/7=44(lít)
Thùng2 có 44*3/4=33 lít
Gọi số lít dầu thùng 3 và thùng 4 lần lượt là a,b
Theo đề, ta có: a+b=77 và 2/5(a-5)=1/3(b+5)
=>a+b=77 và 2/5a-1/3b=5/3+2=11/3
=>a=40 và b=37
Cả 6 thùng dầu có: 31 + 20 + 19 + 18 + 15 = 119( l dầu)
Người thứ 1 mua gấp đôi người thứ 2, tức là số dầu cả 2 người mua là số chia hết cho 3.
Mà: 119 : 3 = 39(dư 2) nên thùng dầu còn lại là số chia 3 dư 2.
Ta có: 31 : 3 = 10(dư 1)
20 : 3 = 6(dư 2)
19 : 3 = 6( dư 1)
18 : 3 = 6
16 : 3 = 5 ( dư 1)
15 : 3 = 5
Trong các số trên, chỉ có 20 chia 3 dư 2.
Vậy thùng còn lại trong kho là thùng 20l.
Đáp án B
Số dầu ở thùng thứ nhất là: 28 : 2 3 = 42 ( l )
Số dầu ở thùng thứ hai là: 48 : 4 5 = 60 ( l )
Cả hai thùng có số lít dầu là: 42 + 60 = 102 ( l )
Đáp án B
Số dầu ở thùng thứ nhất là: 28 : 2 3 = 42 ( l )
Số dầu ở thùng thứ hai là: 48 : 4 5 = 60 ( l )
Cả hai thùng có số lít dầu là: 42 + 60 = 102 ( l )
1/3 số dầu ở thùng 1 là:
60x1/3=20 (lít dầu)
số dầu ở thùng 2 là:
20x2=40 (lít dầu)
số dầu ở thùng 3 là:
40x2=80( lít dầu)
số lít dầu cả 3 thùng chứa là:
60+40+80=180 lít dầu