K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAD và ΔMBE có

\(\hat{AMD}=\hat{BME}\) (hai góc đối đỉnh)

MA=MB

\(\hat{MAD}=\hat{MBE}\) (hai góc so le trong, AD//BE)

Do đó: ΔMAD=ΔMBE

=>AD=BE

Xét tứ giác ADBE có

AD//BE

AD=BE

Do đó: ADBE là hình bình hành

b: Ta có: AD=BE

AD=BC

Do đó: BE=BC

=>B là trung điểm của CE

25 tháng 8

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36

= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36

= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36

= x² + y² + 36

b) Do x² ≥ 0 với mọi x ∈ R

y² ≥ 0 với mọi x ∈ R

Q = x² + y² + 36 ≥ 36 với mọi x ∈ R

Q nhỏ nhất khi x² + y² = 0

⇒ x = y = 0

Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

27 tháng 9

Cức chó cức trâu

27 tháng 9

1. Chứng minh AI=2DH


Bước 1: Tính các góc và xác định độ dài đoạn thẳng.

  • Vì ABCD là hình bình hành nên AB // DC∠D+∠A=180∘. ∠D=180∘−∠A=180∘−120∘=60∘
  • DI là tia phân giác của ∠D nên: ∠CDI=∠ADI=2∠D​=260∘​=30∘
  • AB // DCDI là cát tuyến nên ∠AID=∠CDI (hai góc so le trong). ∠AID=30∘
  • Trong △ADI, ta có ∠AID=30∘ và ∠ADI=30∘. Do đó, △ADI là tam giác cân tại A. AD=AI
  • Vì ABCD là hình bình hành nên AD = BCAB = DC.
  • I là trung điểm của AB nên AI=2AB​. Từ đó suy ra: AD=AI=2AB​

Bước 2: Xét △ADH.

  • Ta có AH⊥DC (theo giả thiết), nên △ADH là tam giác vuông tại H.
  • Trong hình bình hành, ∠ADC=∠D=60∘.
  • Trong tam giác vuông ADH, ta có: cos(∠ADH)=ADDH​ cos(60∘)=ADDH​ 21​=ADDH​ AD=2DH

Bước 3: Kết luận.

  • Từ AI=AD (chứng minh ở Bước 1) và AD=2DH (chứng minh ở Bước 2), ta suy ra: AI=2DH(Điều phải chứng minh)


2. Chứng minh DI=2AH


Bước 1: Xét △ADH.

  • △ADH là tam giác vuông tại H. Ta đã biết ∠D=60∘.
  • Ta có: sin(∠ADH)=ADAH​ sin(60∘)=ADAH​ 23​​=ADAH​ AD=3​2AH​(∗)

Bước 2: Xét △ADI.

  • Trong △ADI, ta có ∠DAI=∠DAB=120∘. AD=AI và ∠ADI=30∘. ∠DAI=180∘−(∠AID+∠ADI)=180∘−(30∘+30∘)=120∘
  • Áp dụng Định lý Sin cho △ADI: sin(∠DAI)DI​=sin(∠AID)AD​ sin(120∘)DI​=sin(30∘)AD​ 23​​DI​=21​AD​ DI⋅3​2​=AD⋅2 DI=AD⋅3​(∗∗)

Bước 3: Kết luận.

  • Thay (∗) vào (∗∗), ta được: DI=(3​2AH​)⋅3 DI=2AH(Điều phải chứng minh)


3. Chứng minh AC vuông góc với AD


Bước 1: Tính độ dài các cạnh liên quan đến △ADC.

  • Ta có AI=AD và I là trung điểm AB. Suy ra AD=2AB​.
  • Vì ABCD là hình bình hành nên DC=AB. Do đó DC=2AD.

Bước 2: Xét △ADC.

  • Ta có △ADC với:
    • DC=2AD
    • ∠ADC=60∘
  • Áp dụng Định lý Cosin để tính AC2: AC2=AD2+DC2−2⋅AD⋅DC⋅cos(∠ADC) AC2=AD2+(2AD)2−2⋅AD⋅(2AD)⋅cos(60∘) AC2=AD2+4AD2−4AD2⋅21​ AC2=5AD2−2AD2 AC2=3AD2

Bước 3: Kiểm tra tính vuông góc.

  • Để AC⊥AD thì △ADC phải vuông tại A. Khi đó, theo định lý Pytago, ta cần có AD2+AC2=DC2.
  • Thay các giá trị đã tính: AD2+AC2=AD2+3AD2=4AD2
  • Và DC2=(2AD)2=4AD2.
  • Vì AD2+AC2=DC2 (4AD2=4AD2), nên △ADC là tam giác vuông tại A.
  • Do đó, AC⊥AD. (Điều phải chứng minh)
25 tháng 9

Dễ mà

25 tháng 9

khó quá rồi


10 tháng 9
Tứ giác MONB có OM//BC nên là hình thang. Hình thang này có MBN=ONB(=ABC) nên là hình thang.
Chứng minh tương tự ta được các tứ giác ONCP;OMAP cũng là hình thang cân.
Suy ra:
MN=OB;NP=OC,MP=OA.
Do đó △MNP là tam giác đều
⇔MN=MP=NP
⇔OB=OC=OA
⇔O là giao điểm của ba đường trung trực của △ABC.
Trong tam giác đều, giao điểm của ba đường trung trực cũng là giao điểm của ba đường cao, ba đường trung tuyển.

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm

14 tháng 3 2016

gọi độ dài cạnh hình tam giác là a.

áp dụng công thức S=\(\frac{a^2\cdot\sqrt{3}}{4}\)=121\(\sqrt{3}\)

bạn tự tính tiếp nha!!!!!!!!!!!!!

15 tháng 3 2020

Nhận xét nào sau đây là sai?

A:Sự oxi hóa chậm là quá trình oxi hóa có kèm theo tỏa nhiệt nhưng không phát sáng

B:Oxi là chất oxi hóa trong các phản ứng hóa học.

C:Sự cháy là sự oxi hóa có kèm theo tỏa nhiệt và không phát sáng.

D:Sự oxi hóa là quá trình tác dụng của một chất với oxi.

# HOK TỐT #