cho phương trình x2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m^2-3\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-3\right)\)

\(=4m^2-8m+4-4m^2+12=-8m+16\)

Để phương trình có hai nghiệm thì Δ>=0

=>-8m+16>=0

=>-8m>=-16

=>m<=2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m^2-3\end{matrix}\right.\)

\(x_1^2+2\left(m-1\right)x_2< =3m^2+8\)

=>\(x_1^2+x_2\left(x_1+x_2\right)< =3m^2+8\)

=>\(\left(x_1^2+x_2^2\right)+x_1x_2< =3m^2+8\)

=>\(\left(x_1+x_2\right)^2-x_1x_2< =3m^2+8\)

=>\(\left(2m-2\right)^2-\left(m^2-3\right)-3m^2-8< =0\)

=>\(4m^2-8m+4-m^2+3-3m^2-8< =0\)

=>-8m-1<=0

=>8m+1>=0

=>\(m>=-\dfrac{1}{8}\)

=>\(-\dfrac{1}{8}< =m< =2\)

2 tháng 5 2024

x2 - 2(m-1)x + m2 -3 = 0 (1)

(1) có 2 nghiệm khi Δ = [ -2(m-1)]2 - 4 . 1. (m2 -3) ≥ 0

<=> 4m2 - 8m + 4 - 4m2 +12 ≥ 0

<=> -8m + 16 ≥ 0

<=> m ≤ 2

Theo định lý Vi-ét:

S= x1 + x2 = -b/2.a = m -1

P= x1.x2 = c/a = m2 -3

Ta có : x1 là nghiệm của (1) nên

x12 - 2(m-1) x1 + m2 -3 = 0

<=> x12 = -2(m-1) x1 - m2 + 3 

Từ đó: 

x12 - 2(m-1) x2 ≤ 3m2 + 8

<=> -2(m-1) x1 - m2 + 3 - 2(m-1) x2 ≤ 3m2 + 8

<=> - 2(m-1)(x1 + x2)  - 4m2 -5 ≤ 0

<=> -2(m2 - 2m +1)  - 4m2 -5 ≤ 0

<=> -6m2 + 4m -7 ≤ 0  (đúng với mọi m ϵ R)

Vậy m ≤ 2 thì thỏa

 

 

 

 

 

13 tháng 6 2016

\(x^2+6x+5=0\)

<=>\(x^2+x+5x+5=0\)

<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9

13 tháng 6 2016

x^2+6x+5=0

<=> x^2+x+5x+5=0

<=>x(x+1)+5(x+1)=0

<=> (x+5)(x+1)=0

=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1

Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR 

\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào 

16 tháng 4 2017
1, (delta)' = (-m)^2 - (m^2 - 4) = m^2 - m^2 + 4 = 4 => Ptr (1) luôn có nghiệm với mọi m 2, Với mọi m ptr (1) có 2 nghiệm x1,x2 Theo hộ thức Vi-ét ta có x1 + x2 = - b/a = -(-2m)/1 = 2m x1*x2 = c/a =(m^2 - 4)/1= m^2 - 4 Theo bài ra ta có x1^2 + x2^2 = 26 <=> (x1+x2)^2 - 2*x1*x2 = 26 <=> (2m)^2 - 2*(m^2 - 4) = 26 <=> 4m^2 - 2m^2 - 8 = 26 <=> 2m^2 - 8 - 26 = 0 <=> 2(m^2 - 17) = 0 <=> m^2 - 17 = 0 <=> (m - căn17)(m + căn17) = 0 <=> m = căn17 hoặc m = -(căn17) (Sr ko nhìu tg nên mk ko sd kí hiệu)
21 tháng 1 2016

nhìn rối mắt nhỉ 

ai đồng ý thì tick mk

21 tháng 1 2016

giai dc phuong trinh nay chac minh chet rui

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)