K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2024

phương trình ý b đưa về Viet khó quá ạ

29 tháng 4 2024

\(b\)\(x^2-\left(2m+1\right)x+m^2-1=0\) \(\left(1\right)\)
Ta có: \(\Delta=b^2-4ac=\left[-\left(2m+1\right)\right]^2-4\cdot1\cdot\left(m^2-1\right)\)
\(=4m^2+4m+1-4m^2+4\)
\(=4m+5\)
Để phương trình có hai nghiệm \(x_1,x_2\) thì \(\Delta\ge0\)
\(\Leftrightarrow4m+5\ge0\Leftrightarrow m\ge-\dfrac{5}{4}\)
Theo viet ta có
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(2m+1\right)}{1}=2m+1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2-1}{1}=m^2-1\end{matrix}\right.\)
Do \(x_1\) là nghiệm của phương trình \(\left(1\right)\) nên
\(x_1^2-\left(2m+1\right)x_1+m^2-1=0\)
\(\Leftrightarrow x_1^2=\left(2m+1\right)x_1-m^2+1\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(x_1^2-2mx_1+m^2\right)\left(x_2+1\right)=4\)
ta được \(\left[\left(2m+1\right)x_1-m^2+1-2mx_1+m^2\right]\left(x_2+1\right)=4\)
\(\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)=4\)
\(\Leftrightarrow x_1x_2+x_1+x_2+1=4\)
\(\Leftrightarrow m^2-1+2m+1+1=4\)
\(\Leftrightarrow m^2+2m-3=0\) \(\left(3\right)\)
Giải phương trình ta được \(m_1=1\) (Thỏa điều kiện)\(;\)
\(m_2=-3\) (Không thỏa điều kiện)
Vậy \(m=1\)

2 tháng 5 2016

dễ lắm bạn mình cm pt đã cho luôn có hai nghiệm pb với mọi m sau đó áp dụng viet tính tích và tổng hai nghiệm  rồi quy đồng hệ thức đứa về dạng tích tổng rồi thay vô là dc

16 tháng 2 2020

a. Thay \(m=-2\) vào pt đề cho ta được pt:

\(x^2-6x-7=0\left(2\right)\)

Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)

b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)

Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)

\(\Leftrightarrow m\le6\)

Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)

Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)

Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:

\(6\left(2m-3\right)=24\)

\(\Rightarrow2m-3=4\)

\(\Rightarrow2m=7\)

\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)

Vậy .............

16 tháng 2 2020

b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)

Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)

Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)

Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)

\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)

\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)

7 tháng 2 2021

a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1

\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)

Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)

b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)

Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)

Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)

16 tháng 4 2017
1, (delta)' = (-m)^2 - (m^2 - 4) = m^2 - m^2 + 4 = 4 => Ptr (1) luôn có nghiệm với mọi m 2, Với mọi m ptr (1) có 2 nghiệm x1,x2 Theo hộ thức Vi-ét ta có x1 + x2 = - b/a = -(-2m)/1 = 2m x1*x2 = c/a =(m^2 - 4)/1= m^2 - 4 Theo bài ra ta có x1^2 + x2^2 = 26 <=> (x1+x2)^2 - 2*x1*x2 = 26 <=> (2m)^2 - 2*(m^2 - 4) = 26 <=> 4m^2 - 2m^2 - 8 = 26 <=> 2m^2 - 8 - 26 = 0 <=> 2(m^2 - 17) = 0 <=> m^2 - 17 = 0 <=> (m - căn17)(m + căn17) = 0 <=> m = căn17 hoặc m = -(căn17) (Sr ko nhìu tg nên mk ko sd kí hiệu)
2 tháng 6 2017

a /

xét ten ta ;(1-2m)^2 - 4(m-3) >0

     <=>1-4m+4m^2-4m+12

     <=>4m^2 +13 luông đúng với mọi m tham số  => phương trình có 2 nhiệm phân biệt x1 x2

25 tháng 4 2018

cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất

20 tháng 3 2018

Làm được câu đầu P/s mới lớp 8 thôi 

Ta có: \(x^2-4x+m+1=0\)

\(\Rightarrow\Delta'=3-m\)

a) Khi m = 2 

\(x^2-4x+3=0\)

\(\Rightarrow\Delta=3-2=1\)

\(\Rightarrow x_1=2+1=3\)

\(\Rightarrow x_2=2-1=1\) Sai bỏ qa nha :"))))

20 tháng 3 2018

hahah oki bn :>

12 tháng 6 2015

a) Tự giải

b) xét denta, đặt điều kiện của m

xét viet x1+x2 vs x1.x2

từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11 

thế viet vao giải, nhơ so sánh đk