Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{5x\left(2^2x3^2\right)^9-2x\left(2^2x3\right)^{14}x3^4}{5x2^{28}x3^{18}-7x2^{29}x3^{18}}\)=\(\frac{5x2^{18}x3^{18}-2x2^{28}x3^{14}x3^4}{2^{28}x3^{18}x\left(5-7x2\right)}\)=\(\frac{5x2^{18}x3^{18}-2^{29}x3^{18}}{2^{28}x3^{18}x\left(-9\right)}\)=
= \(\frac{2^{18}x3^{18}\left(5-2^{11}\right)}{-9x2^{28}x3^{18}}=\frac{5-2^{11}}{-9x2^{10}}=\frac{2043}{9216}=\frac{227}{1024}\)
Ta có : S = \(\frac{5.2^{30}.6^3.3^{15}-2^3.8^9.3^{17}.21}{21.2^{29}.3^{16}.4-2^{29}.\left(3^4\right)^5}=\frac{5.2^{30}.\left(2.3\right)^3.3^{15}-2^3.\left(2^3\right)^9.3^{17}.3.7}{3.7.2^{29}.3^{16}.2^2-2^{29}.3^{20}}=\frac{5.2^{33}.3^{18}-2^{30}.3^{18}.7}{3^{17}.7.2^{31}-2^{29}.3^{20}}\)
\(=\frac{2^{30}.3^{18}.\left(5.2^3-7\right)}{3^{17}.2^{29}.\left(7.2^2-3^3\right)}=2.3.33=198\)
\(E=\dfrac{11.3^{29}-3^{2^{15}}}{2.3^{14}.2.3^{14}}\)
\(=\dfrac{11.3-3^{30}}{2^2}=\dfrac{33-3^{30}}{4}\)
Ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005
Đặt A = 1 + 2 + 22 + 23 + ....... + 22004
=> 2A = 2 + 22 + 23 + ....... + 22005
=> 2A - A = 22005 - 1
=> A = 22005 - 1
Thay vào ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005
=> D = 22005 - 1 - 22005
=> D = -1
a,\(A=1993^{1^{2\times3\times4\times...\times1994}}=1993^1=1993\)
b,\(B=1994^{\left(225-1^2\right)\times\left(225-2^2\right).....\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-15^2\right)...\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-225\right)...\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\times0\times...\left(225-50^2\right)}\)
\(=1994^0=1\)
c, \(C=\frac{2^{10}\times3^{31}+2^{40}\times3^6}{2^{11}\times3^{31}+2^{41}\times3^6}\)
\(=\frac{2^{10}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}{2^{11}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}\)
\(=\frac{2^{10}}{2^{11}}=\frac{1}{2}\)
Ta có :
\(S=\frac{5\times2^{30}\times6^2\times3^{15}-2^3\times8^9\times3^{17}\times21}{21\times2^{29}\times3^{16}\times4-2^{29}\times\left(3^4\right)^5}\)
\(S=\frac{5\times2^{30}\times2^2\times3^2\times3^{15}-2^3\times2^{27}\times3^{17}\times3\times7}{3\times7\times2^{29}\times3^{16}\times2^2-2^{29}\times3^{20}}\)
\(S=\frac{5\times2^{32}\times3^{17}-2^{30}\times3^{18}\times7}{7\times2^{31}\times3^{17}-2^{29}\times3^{20}}\)
\(S=\frac{2^{30}\times3^{17}\times\left(5\times2^2-3\times7\right)}{2^{29}\times3^{17}\times\left(2^2\times7-3^3\right)}\)
\(S=\frac{2^{30}\times3^{17}\times\left(-1\right)}{2^{29}\times3^{17}\times1}\)
\(\Rightarrow S=-2\)
Ko viết đề :)
\(S=\frac{5\cdot2^{30}\cdot2^2\cdot3^2\cdot3^{15}-2^3\cdot2^{27}\cdot3^{17}\cdot3\cdot7}{3\cdot7\cdot2^{29}\cdot3^{16}\cdot2^2-2^{29}\cdot3^{20}}\)
\(=\frac{5\cdot2^{32}\cdot3^{17}-2^{30}\cdot3^{18}\cdot7}{3^{17}\cdot7\cdot2^{31}-2^{29}\cdot3^{20}}\)
\(=\frac{2^{30}\cdot3^{17}\left(5\cdot2^2-3\cdot7\right)}{2^{29}\cdot3^{17}\left(7\cdot2^2-3^3\right)}\)
\(=\frac{2\left(20-21\right)}{28-27}\)
\(=\frac{40-42}{1}=-\frac{2}{1}=-2\)
Vậy S= -2
\(A=\frac{7x\left(2x2\right)^5x3^{11}+2^{13}x\left(3x3\right)^5}{\left(2x3\right)^{10}+2^{12}x3^{10}}\)
\(A=\frac{7x2^{10}x3^{11}+2^{13}x3^{10}}{2^{10}x3^{10}+2^{12}x3^{10}}\)
tự làm tiếp