\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{99}=-4\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2024

Sửa đề: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)

\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}+4=0\)

\(\dfrac{x+1}{99}+1+\dfrac{x+2}{98}+1+\dfrac{x+3}{97}+1+\dfrac{x+4}{96}+1=0\)

\(\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)

\(\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)

\(x+100=0\) (vì \(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\ne0\))

\(x=-100\)

24 tháng 4 2024

\(\dfrac{x+1}{99}\)+\(\dfrac{x+2}{98}\)+\(\dfrac{x+3}{97}\)+\(\dfrac{x+4}{96}\)=\(-4\)

<=> \(\dfrac{x+1}{99}\)+1+\(\dfrac{x+2}{98}\)+1+\(\dfrac{x+3}{97}\)+1+\(\dfrac{x+4}{96}\)+1=0

<=>(x+100)/99+(x+100)/98+(x+100)/97+(x+100)/96=0

<=>(x+100)(1/99+1/98+1/97+1/96)=0

Vi 1/99+1/98+1/97+1/96 luon >0 nen x+100=0<=>x=-100

20 tháng 7 2017

\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)

\(\Leftrightarrow\dfrac{x+1}{99}+1+\dfrac{x+2}{98}+1+\dfrac{x+3}{97}+1+\dfrac{x+4}{96}+1=0\)

\(\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)

\(\Rightarrow x+100=0\Leftrightarrow x=-100\) vậy \(x=-100\)

4 tháng 4 2017

Đặt : \(B=\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

\(B=\left(\dfrac{99}{1}+1\right)+\left(\dfrac{98}{2}+1\right)+...+\left(\dfrac{1}{99}+1\right)-99\)

\(B=\dfrac{100}{1}+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}-99\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\left(100-99\right)\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}\)

\(B=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)

Ta có : \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

b: \(\Leftrightarrow x-10\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{53\cdot55}\right)=\dfrac{3}{11}\)

\(\Leftrightarrow x-10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)

\(\Leftrightarrow x-10\cdot\dfrac{4}{55}=\dfrac{3}{11}\)

=>x=3/11+20/55=3/11+4/11=7/11

c: \(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-2}{98}-1\right)+\left(\dfrac{x-5}{95}-1\right)=\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{95}\)

\(\Leftrightarrow x-100=1\)

hay x=101

25 tháng 3 2017

3) \(\dfrac{3}{4}.x-\dfrac{5}{3}.x=\dfrac{7}{12}\)

\(\left(\dfrac{3}{4}-\dfrac{5}{3}\right).x=\dfrac{7}{12}\)

\(-\dfrac{11}{12}.x=\dfrac{7}{12}\)

\(x=\dfrac{7}{12}:\left(-\dfrac{11}{12}\right)\)

\(x=-\dfrac{7}{11}\)

21 tháng 3 2017

a, đặt đề bài là A

Ta có : A=( 1-1/2+1/2-1/3+...+1/9-1/10).(x-1)+1/10.x=x-9/10

= (1-1/10).(x-1)+1/10.x

= 9/10 .( x-1 )+1/10.x

=1.x-9/10

nên x= 0 hoặc 1

21 tháng 3 2017

với -1 nữa nha

29 tháng 5 2017

a) Ta có

S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)

2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)

2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)

S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)

b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)

A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

A = \(2-\dfrac{1}{99}\)

A = \(\dfrac{197}{99}\)

c) Ta có

B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

B = \(1-\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

d) Ta có

C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)

C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)

C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))

Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)

D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

D = \(\dfrac{1}{2}-\dfrac{1}{99}\)

D = \(\dfrac{97}{198}\)

=> C = 51 + 100.\(\dfrac{97}{198}\)

C = 51 + \(\dfrac{4850}{99}\)

C = \(\dfrac{9899}{99}\)

Đây là bài làm của mình sai thì nx nha

2 tháng 5 2017

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{2}{3}...\dfrac{98}{99}=\dfrac{1}{99}\)

Chọn A

2 tháng 5 2017

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}....\dfrac{98}{99}\)

\(=\dfrac{1.2.3....98}{2.3.4....99}=\dfrac{1}{99}\)

- Đáp án A.