Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\frac{29x^2+29}{x^2+1}=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
=>Biểu thức này không phụ thuộc vào biến

Dạng biểu thức bạn đưa ra là:
\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1}\)Và bạn cần xác định điều kiện để biểu thức này chia hết cho 38 với \(n \geq 2\).
Để giải quyết bài toán này, chúng ta có thể phân tích biểu thức và xem xét tính chất của phép chia với 38.
Bước 1: Phân tích chia hết cho 38
Ta biết rằng:
\(38 = 2 \cdot 19\)Vì vậy, biểu thức cần phải chia hết cho cả 2 và 19.
Bước 2: Xét chia hết cho 2
Xét biểu thức mô tả phép chia cho 2:
\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1}\)- \(5^{2 n - 1} \cdot 2^{n}\) luôn chia hết cho \(2^{n}\), mà \(n \geq 2\), do đó phần này luôn chia hết cho 2 khi \(n \geq 2\).
- \(3^{n + 1} \cdot 2^{2 n - 1}\) cũng chia hết cho \(2^{2 n - 1}\), mà \(2 n - 1 \geq 3\) khi \(n \geq 2\), do đó phần này cũng chia hết cho 2.
Từ đó, ta có thể kết luận rằng biểu thức sẽ chia hết cho 2 với mọi \(n \geq 2\).
Bước 3: Xét chia hết cho 19
Bây giờ ta cần xem xét chia hết cho 19, tức là kiểm tra điều kiện:
\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1} \equiv 0 \left(\right. m o d 19 \left.\right)\)Ta sẽ xét các giá trị của \(n\) từ \(n = 2\) trở đi và kiểm tra xem biểu thức có chia hết cho 19 không.
Bước 4: Kiểm tra các giá trị \(n\)
Bây giờ, tôi sẽ thử tính một số giá trị của biểu thức cho \(n = 2 , 3 , 4\) để xem nó có chia hết cho 19 không.
Chờ một chút nhé, tôi sẽ tính toán thử.
It looks like to run Python code, you'd need to be logged in to ChatGPT. However, here's the code you can run on your own to check the divisibility for different values of \(n\):
def check_expression(n):
# Calculate the expression for given n
expr = (5**(2*n - 1) * 2**n + 3**(n + 1) * 2**(2*n - 1)) % 38
return expr == 0
# Check for different values of n >= 2
results = {n: check_expression(n) for n in range(2, 10)}
print(results)
You can run it in any Python environment (like Jupyter, or an online compiler) to check for which values of \(n\), the expression is divisible by 38. Let me know if you need more help with this!

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có
BH chung
HA=HK
Do đó: ΔBHA=ΔBHK
=>BA=BK
=>\(\hat{BAK}=\hat{BKA}\)
b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)
\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)
mà \(\hat{BAK}=\hat{BKA}\)
nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)
Xét ΔBAD và ΔBKI có
\(\hat{BAD}=\hat{BKI}\)
BA=BK
\(\hat{ABD}\) chung
Do đó: ΔBAD=ΔBKI
=>BD=BI; AD=KI
Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)
nên IK//AK
=>AKDI là hình thang
Hình thang AKDI có AD=KI
nên AKDI là hình thang cân

a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC

A B C D M N E
a, xét tứ giác AMDN có :
góc BAC = góc DMA = góc AND = 90 (gt)
=> AMDN là hình chữ nhật (dấu hiệu)
b, AMDN là hình chữ nhật (câu a)
=> AN // DM hay AN // ME (1)
AMDN là hình chữ nhật => AN = MD (tc)
MD = ME do E đối xứng cới D qua M (gt)
=> AN = ME và (1)
=> AEMN là hình bình hành (dấu hiệu)
=> AN // ME (đn)
c, AMDN là hình chữ nhật (câu a)
để AMDN là hình vuông
<=> DN = DM (dh) (2)
có D là trung điểm của BC (gt)
DN // AB do AMDN là hình chữ nhật
=> DN là đường trung bình của tam giác ABC
=> DN = AB/2 (tc)
tương tự có DM = AC/2 và (2)
<=> AB/2 = AC/2
<=> AB = AC
tam giác ABC vuông tại A gt)
<=> tam giác ABC vuông cân tại A
vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông
+ vì AMDN là hình vuông
=> MN _|_ AD (tc)
=> S AMDN = NM.AD : 2 (Đl)
tam giác ABC vuông tại A có AD _|_ BC
=> S ABC = AD.BC : 2 (đl) (3)
BC = 2NM do NM là đường trung bình của tam giác ABC và (3)
=> S ABC = AD.2MN : 2
=> S ABC = 2S AMDN

a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
giúp mk với
Cho tam giác ABC lấy m là điểm bất kì trên BC vẽ I là trung điểm của am từ y kẻ ik song song với AB k không thuộc BC tính tỉ số ik phần AB