K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4

Để tìm giá trị lớn nhất của biểu thức \( P \), ta sẽ sử dụng bất đẳng thức Cauchy-Schwarz (hay bất đẳng thức Buniakovskii):

Đặt \( x = \sqrt{a}, y = \sqrt{b}, z = \sqrt{c} \), ta có \( a = x^2, b = y^2, c = z^2 \).

Biểu thức \( P \) sẽ trở thành:
\[ P = \frac{x^2}{x^2+3} + \frac{y^2}{y^2+3} + \frac{z^2}{z^2+3} + \frac{xy}{3x+z} + \frac{yz}{3y+x} + \frac{zx}{3z+y} \]

Sử dụng bất đẳng thức Cauchy-Schwarz, ta có:
\[ P \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+3(x+y+z)} + \frac{(xy+yz+zx)^2}{3(xy+yz+zx)+xy(x+y+z)} \]

Do \( x+y+z = \sqrt{a} + \sqrt{b} + \sqrt{c} \leq \sqrt{3(a+b+c)} = 3 \), và \( xy+yz+zx \leq \frac{(x+y+z)^2}{3} \), ta có:

\[ P \geq \frac{9}{9+9} + \frac{\frac{(x+y+z)^2}{9}}{3 \times \frac{(x+y+z)^2}{9} + \frac{(x+y+z)^3}{27}} \]
\[ = \frac{1}{2} + \frac{1}{3+\frac{1}{3}} \]
\[ = \frac{1}{2} + \frac{1}{\frac{10}{3}} \]
\[ = \frac{1}{2} + \frac{3}{10} \]
\[ = \frac{8}{10} = \frac{4}{5} \]

Vậy, giá trị lớn nhất của \( P \) là \( \frac{4}{5} \), đạt được khi \( a = b = c = 1 \).